Applied Physics A

, Volume 87, Issue 2, pp 143–150 | Cite as

Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography

  • W. Wu
  • E. Kim
  • E. Ponizovskaya
  • Y. Liu
  • Z. Yu
  • N. Fang
  • Y.R. Shen
  • A.M. Bratkovsky
  • W. Tong
  • C. Sun
  • X. Zhang
  • S.-Y. Wang
  • R.S. Williams
Article

Abstract

Two types of optical metamaterials operating at near-IR and mid-IR frequencies, respectively, have been designed, fabricated by nanoimprint lithography (NIL), and characterized by laser spectroscopic ellipsometry. The structure for the near-IR range was a metal/dielectric/metal stack “fishnet” structure that demonstrated negative permittivity and permeability in the same frequency region and hence exhibited a negative refractive index at a wavelength near 1.7 μm. In the mid-IR range, the metamaterial was an ordered array of fourfold symmetric L-shaped resonators (LSRs) that showed both a dipole plasmon resonance resulting in negative permittivity and a magnetic resonance with negative permeability near wavelengths of 3.7 μm and 5.25 μm, respectively. The optical properties of both metamaterials are in agreement with theoretical predictions. This work demonstrates the feasibility of designing various optical negative-index metamaterials and fabricating them using the nanoimprint lithography as a low-cost, high-throughput fabrication approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.I. Mandelshtam, in: Lectures in Optics, Relativity, and Quantum Mechanics (Moscow, Nauka, 1972), p. 389Google Scholar
  2. 2.
    V.E. Pafomov, Zh. Eksp. Teor. Fiz. 36, 1853 (1959)Google Scholar
  3. 3.
    V.G. Veselago, Usp. Fiz. Nauk. 92, 517 (1967)Google Scholar
  4. 4.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)CrossRefADSGoogle Scholar
  5. 5.
    J.B. Pendry, A.J. Holten, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999)CrossRefGoogle Scholar
  6. 6.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  7. 7.
    A.M. Bratkovsky, A. Cano, A.P. Levanyuk, Appl. Phys. Lett. 87, 103507 (2005)CrossRefGoogle Scholar
  8. 8.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999)CrossRefGoogle Scholar
  9. 9.
    T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, 1494 (2004)CrossRefADSGoogle Scholar
  10. 10.
    S. Zhang, W.J. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, S.R.J. Brueck, Phys. Rev. Lett. 94, 037402 (2005)CrossRefADSGoogle Scholar
  11. 11.
    S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis, Science 306, 5700 (2004)CrossRefGoogle Scholar
  12. 12.
    C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005)CrossRefADSGoogle Scholar
  13. 13.
    S. Zhang, W.J. Fan, K.J. Malloy, S.R.J. Brueck, N.C. Panoiu, R.M. Osgood, Opt. Express 13, 4922 (2005)CrossRefADSGoogle Scholar
  14. 14.
    S. Zhang, W.J. Fan, C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005)CrossRefADSGoogle Scholar
  15. 15.
    G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis, Opt. Lett. 30, 3198 (2005)CrossRefADSGoogle Scholar
  16. 16.
    V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)CrossRefADSGoogle Scholar
  17. 17.
    A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nature 438, 335 (2005)CrossRefADSGoogle Scholar
  18. 18.
    E. Ponizovskaya, A.M. Bratkovsky, to be publishedGoogle Scholar
  19. 19.
    N. Katsarakis, T. Koschny, M. Kafesaki, E.N. Economou, C.M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004)CrossRefADSGoogle Scholar
  20. 20.
    R. Marques, F. Medina, R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002)CrossRefADSGoogle Scholar
  21. 21.
    W.J. Padilla, cond-mat/0508307Google Scholar
  22. 22.
    S. Zhang, W.J. Fan, K.J. Malloy, S.R.J. Brueck, N.C. Panoiu, R.O. Osgood, J. Opt. Soc. Am. B 23, 434 (2006)CrossRefADSGoogle Scholar
  23. 23.
    G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Science 312, 892 (2006)CrossRefADSGoogle Scholar
  24. 24.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, J. Vac. Sci. Technol. B 14, 4129 (1996)CrossRefGoogle Scholar
  25. 25.
    G.Y. Jung, Z.Y. Li, W. Wu, Y. Chen, D.L. Olynick, S.Y. Wang, W.M. Tong, R.S. Williams, Langmuir 21, 1158 (2005)CrossRefGoogle Scholar
  26. 26.
    W. Wu, G.Y. Jung, D.L. Olynick, J. Straznicky, Z. Li, X. Li, D.A.A. Ohlberg, Y. Chen, S.-Y. Wang, J.A. Liddle, W.M. Tong, R.S. Williams, Appl. Phys. A 80, 1173 (2005)CrossRefGoogle Scholar
  27. 27.
    A. Taflove, S.C. Hagness, Computational Electrodynamics, 2nd edn. (Artech House, Boston, London, 2000)Google Scholar
  28. 28.
    H. Raether, Surface Plasmons (Springer, Berlin, 1988)Google Scholar
  29. 29.
    W. Wu, Y. Liu, E.M. Kim, N.X. Fang, C. Sun, X. Zhang, Y.R. Shen, S.-Y. Wang, R.S. Williams, Appl. Phys. Lett. (submitted)Google Scholar
  30. 30.
    D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • W. Wu
    • 1
  • E. Kim
    • 2
  • E. Ponizovskaya
    • 1
  • Y. Liu
    • 3
  • Z. Yu
    • 1
  • N. Fang
    • 4
  • Y.R. Shen
    • 2
  • A.M. Bratkovsky
    • 1
  • W. Tong
    • 1
  • C. Sun
    • 3
  • X. Zhang
    • 3
  • S.-Y. Wang
    • 1
  • R.S. Williams
    • 1
  1. 1.Quantum Science ResearchHewlett-Packard LaboratoriesPalo AltoUSA
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  3. 3.NSF Nano-scale Science and Engineering Center (NSEC)University of CaliforniaBerkeleyUSA
  4. 4.Department of Mechanical & Industrial EngineeringUniversity of IllinoisUrbana-ChampagneUSA

Personalised recommendations