Applied Physics A

, 87:297

Brewster angle for anisotropic materials from the extinction theorem

Article

Abstract

We explore the physical origin of the Brewster angle in the external and internal reflections associated with an anisotropic material. We obtain the expressions of the reflected fields and the existence condition of the Brewster angle by using the extinction theorem. It is found that the Brewster angle will occur if the total contribution of the material’s electric and magnetic dipoles to the reflected field becomes zero. In internal reflection, the requirements on the material parameters ε and μ for the Brewster angle are the same as those in external reflection, and the Brewster angle is just the refraction angle in external reflection at the incidence of the external Brewster angle. The results of the present paper are applicable to dielectric and magnetic materials, including metamaterials.

References

  1. 1.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, , 1999)Google Scholar
  2. 2.
    V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968)CrossRefADSGoogle Scholar
  3. 3.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)CrossRefADSGoogle Scholar
  4. 4.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  5. 5.
    D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003)CrossRefADSGoogle Scholar
  6. 6.
    I.V. Lindell, S.A. Tretyakov, K.I. Nikoskinen, S. Ilvonen, Microwave Opt. Technol. Lett. 31, 129 (2001)Google Scholar
  7. 7.
    D.R. Smith, P. Kolinko, D. Schurig, J. Opt. Soc. Am. B 21, 1032 (2004)CrossRefADSGoogle Scholar
  8. 8.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Opt. Express 11, 746 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    L.B. Hu, S.T. Chui, Phys. Rev. B 66, 085108 (2002)CrossRefADSGoogle Scholar
  10. 10.
    P.A. Belov, Microwave Opt. Technol. Lett. 37, 259 (2003)Google Scholar
  11. 11.
    T.G. Mackay, A. Lakhtakia, Phys. Rev. E 69, 026602 (2004)CrossRefADSGoogle Scholar
  12. 12.
    R.A. Depine, M.E. Inchaussandague, A. Lakhtakia, J. Opt. Soc. Am. A 23, 949 (2006)CrossRefADSGoogle Scholar
  13. 13.
    H. Luo, W. Hu, X. Yi, H. Liu, J. Zhu, Opt. Commun. 254, 353 (2005)CrossRefADSGoogle Scholar
  14. 14.
    H. Luo, W. Hu, W. Shu, F. Li, Z. Ren, Europhys. Lett. 74, 1081 (2006)CrossRefADSGoogle Scholar
  15. 15.
    L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. B 68, 115424 (2003)CrossRefADSGoogle Scholar
  16. 16.
    T.M. Grzegorczyk, Z.M. Thomas, J.A. Kong, Appl. Phys. Lett. 86, 251909 (2005)CrossRefADSGoogle Scholar
  17. 17.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 1 (Addison-Wesley, , 1963), Sects. 31 and 30-7Google Scholar
  18. 18.
    E. Lalor, E. Wolf, J. Opt. Soc. Am. 62, 1165 (1972)Google Scholar
  19. 19.
    M.A. Karam, Appl. Opt. 36, 5238 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    G.C. Reali, J. Opt. Soc. Am. 72, 1421 (1982)ADSGoogle Scholar
  21. 21.
    W.T. Doyle, Am. J. Phys. 53, 463 (1985)CrossRefADSGoogle Scholar
  22. 22.
    H.M. Lai, Y.P. Lau, W.H. Wong, Am. J. Phys. 70, 173 (2002)CrossRefADSGoogle Scholar
  23. 23.
    C. Fu, Z.M. Zhang, P.N. First, Appl. Opt. 44, 3716 (2005)CrossRefADSGoogle Scholar
  24. 24.
    M.A. Karam, J. Opt. Soc. Am. A 13, 2208 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    N.H. Shen, Q. Wang, J. Chen, Y.X. Fan, J.P. Ding, H.T. Wang, J. Opt. Soc. Am. B 23, 904 (2006)CrossRefADSGoogle Scholar
  26. 26.
    J.A. Kong, Electromagnetic Wave Theory (EMW, New York, 2000)Google Scholar
  27. 27.
    X.S. Rao, C.K. Ong, Phys. Rev. B 68, 113103 (2003)CrossRefADSGoogle Scholar
  28. 28.
    P.A. Belov, Phys. Rev. B 73, 045102 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of PhysicsNanjing UniversityNanjingP.R. China

Personalised recommendations