Advertisement

Applied Physics A

, Volume 86, Issue 3, pp 283–288 | Cite as

Electron–phonon induced conductance gaps in carbon nanotubes

  • L.E.F. Foa Torres
  • S. RocheEmail author
Article

Abstract

This work presents a theoretical study of quantum charge transport through zigzag and armchair carbon nanotubes in the presence of electron–phonon interaction. By using a non-perturbative description of the electron–phonon coupling in Fock space, one reveals the occurrence of a transmission gap opening at half the optical A1(L) phonon energy, \(\hbar\omega_{0}/2\), above (below) the charge neutrality point associated with phonon emission (absorption). This mechanism, which is prevented at low bias voltages by Pauli blocking, develops when the system is driven out of equilibrium (high bias voltages). This yields an onset of current saturation of about 30 μA, which brings a completely novel perspective to understand electrical characteristics of nanotube-based devices.

Keywords

Phonon Mode Phonon Emission Pauli Blocking Fermi Golden Rule Charge Neutrality Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.F. Smalley, Nature (London) 318, 62 (1985)CrossRefGoogle Scholar
  2. 2.
    S. Iijima, Nature 354, 56 (1991)CrossRefADSGoogle Scholar
  3. 3.
    A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)CrossRefADSGoogle Scholar
  4. 4.
    C.T. White, T.N. Todorov, Nature 393, 240 (1998)CrossRefADSGoogle Scholar
  5. 5.
    J.W. Mintmire, C.T. White, Nature 394, 29 (1998)CrossRefADSGoogle Scholar
  6. 6.
    J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992)CrossRefADSGoogle Scholar
  7. 7.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 46, 1804 (1992)CrossRefADSGoogle Scholar
  8. 8.
    K. Harigaya, M. Fujita, Phys. Rev. B 47, 16563 (1993)CrossRefADSGoogle Scholar
  9. 9.
    A. Sedeki, L.G. Caron, C. Bourbonnais, Phys. Rev. B 62, 6975 (2000)CrossRefADSGoogle Scholar
  10. 10.
    M.T. Figge, M. Mostovoy, J. Knoester, Phys. Rev. Lett. 86, 4572 (2001)CrossRefADSGoogle Scholar
  11. 11.
    D. Connétable, G.M. Rignanese, J.C. Charlier, X. Blase, Phys. Rev. Lett. 94, 015503 (2005)CrossRefADSGoogle Scholar
  12. 12.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)Google Scholar
  13. 13.
    A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, Phys. Rev. Lett. 92, 106804 (2004)CrossRefADSGoogle Scholar
  14. 14.
    J.Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T.A. Arias, P. Brouwer, P.L. McEuen, Nano Lett. 4, 517 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Bockrath, D.H. Cobden, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Nature 397, 598 (1999)CrossRefADSGoogle Scholar
  16. 16.
    F. Triozon, S. Roche, A. Rubio, D. Mayou, Phys. Rev. B 69, 121410 (2004)CrossRefADSGoogle Scholar
  17. 17.
    S. Latil, S. Roche, D. Mayou, J.C. Charlier, Phys. Rev. Lett. 92, 256805 (2004)CrossRefADSGoogle Scholar
  18. 18.
    J.C. Gómez-Navarro, P.J. De Pablo, J. Gomez-Herrero, B. Biel, F.J. Garcia-Vidal, A. Rubio, F. Flores, Nature Mater. 4, 534 (2005)CrossRefADSGoogle Scholar
  19. 19.
    S. Latil, F. Triozon, S. Roche, Phys. Rev. Lett. 95, 126802 (2005)CrossRefADSGoogle Scholar
  20. 20.
    Z. Yao, C.L. Kane, C. Dekker, Phys. Rev. Lett. 84, 2941 (2000)CrossRefADSGoogle Scholar
  21. 21.
    E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai, Phys. Rev. Lett. 95, 155505 (2005)CrossRefADSGoogle Scholar
  22. 22.
    J. Appenzeller, J. Knoch, M. Radosavljević, Ph. Avouris, Phys. Rev. Lett. 92, 226802 (2006)CrossRefADSGoogle Scholar
  23. 23.
    V. Perebeinos, J. Tersoff, P. Avouris, Phys. Rev. Lett. 94, 086802 (2005)CrossRefADSGoogle Scholar
  24. 24.
    G. Pennington, N. Goldsman, Phys. Rev. B 68, 086802 (2005)Google Scholar
  25. 25.
    M. Lazzeri, S. Piscanec, F. Mauri, A.C. Ferrari, J. Robertson, Phys. Rev. Lett. 95, 236802 (2005)CrossRefADSGoogle Scholar
  26. 26.
    M. Georghe, R. Gutierrez, N. Ranjan, A. Pecchia, A. Di Carlo, G. Cuniberti, Europhys. Lett. 71, 438 (2005)CrossRefADSGoogle Scholar
  27. 27.
    S. Roche, J. Jiang, F. Triozon, R. Saito, Phys. Rev. Lett. 95, 076803 (2005)CrossRefADSGoogle Scholar
  28. 28.
    M.A. Kuroda, A. Cangellaris, J.P. Leburton, Phys. Rev. Lett. 95, 266803 (2005)CrossRefADSGoogle Scholar
  29. 29.
    M. Lazzeri, F. Mauri, Phys. Rev. B 73, 165419 (2006)CrossRefADSGoogle Scholar
  30. 30.
    X. Zhou, J.Y. Park, S. Huang, J. Liu, P.L. McEuen, Phys. Rev. Lett. 95, 146805 (2005)CrossRefADSGoogle Scholar
  31. 31.
    S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, J. Robertson, Phys. Rev. Lett. 93, 185503 (2004)CrossRefADSGoogle Scholar
  32. 32.
    O. Dubay, G. Kresse, H. Kuzmany, Phys. Rev. Lett. 88, 235506 (2002)CrossRefADSGoogle Scholar
  33. 33.
    L.E.F. Foa Torres, S. Roche, Phys. Rev. Lett. 97, 076804 (2006)CrossRefADSGoogle Scholar
  34. 34.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)CrossRefADSGoogle Scholar
  35. 35.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B 22, 2099 (1980)CrossRefADSGoogle Scholar
  36. 36.
    G.D. Mahan, Phys. Rev. B 68, 125409 (2003)CrossRefADSGoogle Scholar
  37. 37.
    H. Watanabe, T. Kawarabayashi, Y. Ono, J. Phys. Soc. Japan 74, 1240 (2005)zbMATHCrossRefADSGoogle Scholar
  38. 38.
    E.V. Anda, S.S. Makler, H.M. Pastawski, R.G. Barrera, Braz. J. Phys. 24, 330 (1994)Google Scholar
  39. 39.
    J. Bonča, S.A. Trugman, Phys. Rev. Lett. 75, 2566 (1995)CrossRefADSGoogle Scholar
  40. 40.
    L.E.F. Foa Torres, H.M. Pastawski, S.S. Makler, Phys. Rev. B 64, 193304 (2001)CrossRefADSGoogle Scholar
  41. 41.
    N. Mingo, K. Makoshi, Phys. Rev. Lett. 84, 3694 (2000)CrossRefADSGoogle Scholar
  42. 42.
    H. Ness, A.J. Fisher, Phys. Rev. Lett. 83, 452 (1999)CrossRefADSGoogle Scholar
  43. 43.
    E.G. Emberly, G. Kirczenow, Phys. Rev. B 61, 5740 (2000)CrossRefADSGoogle Scholar
  44. 44.
    L.E.F. Foa Torres, Phys. Rev. B 72, 245339 (2005)CrossRefADSGoogle Scholar
  45. 45.
    J.H. Shirley, Phys. Rev. 138, B979 (1965)CrossRefADSGoogle Scholar
  46. 46.
    H. Sambe, Phys. Rev. A 7, 2203 (1973)CrossRefADSGoogle Scholar
  47. 47.
    S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005)CrossRefADSGoogle Scholar
  48. 48.
    D.F. Martínez, J. Phys. A 36, 9827 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    N. Mingo, L. Yang, J. Han, M.P. Anantram, Phys. Stat. Solidi B 226, 79 (2001)CrossRefADSGoogle Scholar
  50. 50.
    A. Svizhenko, M.P. Anantram, Phys. Rev. B 72, 085430 (2005)CrossRefADSGoogle Scholar
  51. 51.
    D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995)CrossRefADSGoogle Scholar
  52. 52.
    J. Jiang, R. Saito, G. Samsonidze, S. Chou, A. Jorio, G. Dresselhaus, M. Dresselhaus, Phys. Rev. B 72, 235408 (2005)CrossRefADSGoogle Scholar
  53. 53.
    From the point of view of momentum conservation, this process can be seen as an Umklapp process. Electrons and phonons not only interact among themselves (e–ph processes) but also with the periodic potential (lattice). Thus, momentum conservation is defined modulo a reciprocal lattice vectorGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.CEA/LETIGrenobleFrance
  2. 2.CEA/DSM/DRFMC/SPSMS/GTGrenobleFrance

Personalised recommendations