Applied Physics A

, Volume 86, Issue 2, pp 235–241

Shot-to-shot correlation of residual energy and optical absorptance in femtosecond laser ablation

Article

Abstract

In this paper, we perform a shot-to-shot detailed study of how residual thermal energy correlates to the optical absorptance change due to laser-induced surface structural modifications in multi-shot femtosecond laser ablation. We observe an overall enhancement for residual thermal coupling and absorptance in air. Surprisingly, residual thermal coupling in air shows a non-monotonic dependence on pulse number and reaches a minimum value after a certain number of pulses, while these behaviors are not seen in absorptance. In vacuum, however, both suppression and enhancement are seen in residual energy coupling although absorptance is always enhanced. To explain these observations, we suggest that air plasma plays a dominant role in thermal coupling at a relatively low number of applied pulses, while the formation of a cavity plays a dominant role at a high number of pulses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.I. Anisimov, B.S. Luk’yanchuk, Phys. Uspekhi 45, 293 (2002)CrossRefGoogle Scholar
  2. 2.
    S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitello, X. Wang, Phys. Rev. B 71, 033406 (2005)CrossRefADSGoogle Scholar
  3. 3.
    S. Nolte, B.N. Chichkov, H. Welling, Y. Shani, K. Liebermann, H. Terkel, Opt. Lett. 24, 914 (1999)ADSGoogle Scholar
  4. 4.
    J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 81, 325 (2005)CrossRefADSGoogle Scholar
  5. 5.
    A.Y. Vorobyev, C. Guo, Opt. Express 14, 2164 (2006)CrossRefADSGoogle Scholar
  6. 6.
    P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Opt. Commun. 114, 106 (1995)CrossRefADSGoogle Scholar
  7. 7.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Appl. Phys. A 63, 109 (1996)ADSGoogle Scholar
  8. 8.
    G. Ausano, A.C. Barone, V. Iannotti, L. Lanotte, S. Amoruso, R. Bruzzese, M. Vitiello, Appl. Phys. Lett. 85, 4103 (2004)CrossRefADSGoogle Scholar
  9. 9.
    A.Y. Vorobyev, V.M. Kuzmichev, N.G. Kokody, P. Kohns, J. Dai, C. Guo, Appl. Phys. A 82, 357 (2006)CrossRefADSGoogle Scholar
  10. 10.
    A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 86, 011916 (2005)CrossRefADSGoogle Scholar
  11. 11.
    A.Y. Vorobyev, C. Guo, Phys. Rev. B 72, 195422 (2005)CrossRefADSGoogle Scholar
  12. 12.
    G.W.C. Kaye, T.H. Laby, Tables of Physical and Chemical Constants, 11th edn. (Longmans, London, 1956)Google Scholar
  13. 13.
    C. Wu, C.H. Crouch, L. Zhao, J.E. Carey, R. Younkin, J.A. Levinson, E. Mazur, R.M. Farrell, P. Gothoskar, A. Karger, Appl. Phys. Lett. 78, 1850 (2001)CrossRefADSGoogle Scholar
  14. 14.
    J.A. McKay, R.D. Bleach, D.J. Nagel, J.T. Schriemph, R.B. Hall, C.R. Pond, S.K. Manlief, J. Appl. Phys. 50, 3231 (1979)CrossRefADSGoogle Scholar
  15. 15.
    A.Y. Vorobyev, Sov. J. Quantum Electron. 15, 490 (1985)CrossRefGoogle Scholar
  16. 16.
    H.M. Milchberg, T.R. Clark, C.G. Durfee, T.M. Antonsen, P. Mora, Phys. Plasmas 3, 2149 (1996)CrossRefADSGoogle Scholar
  17. 17.
    J.G. Fujimoto, J.M. Liu, E.P. Ippen, Phys. Rev. Lett. 53, 1837 (1984)CrossRefADSGoogle Scholar
  18. 18.
    J. König, S. Nolte, A. Tünnermann, Opt. Express 13, 10597 (2005)CrossRefGoogle Scholar
  19. 19.
    D. Breitling, A. Ruf, P.W. Berger, F.H. Dausinger, S.M. Klimentov, P.A. Pivovarov, T.V. Kononenko, V.I. Konov, Proc. SPIE 5121, 24 (2003)ADSGoogle Scholar
  20. 20.
    S.S. Mao, X. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 76, 31 (2000)CrossRefADSGoogle Scholar
  21. 21.
    J.A. McKay, J.T. Schriemph, T.L. Cronburg, J.E. Eninger, J.A. Woodroffe, Appl. Phys. Lett. 36, 125 (1980)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations