Applied Physics A

, Volume 86, Issue 2, pp 165–170 | Cite as

Structural properties of femtosecond laser-induced modifications in LiNbO3

  • J. BurghoffEmail author
  • H. Hartung
  • S. Nolte
  • A. Tünnermann
Invited paper


Structural modifications induced by femtosecond laser pulses in LiNbO3 were studied. The influence of the processing and focusing parameters was investigated. Two different types of modifications could be identified. High laser fluences cause a refractive index decrease, material damage and stresses in the surrounding crystalline lattice. At low laser fluences, an extraordinary index increase was observed that allows for optical waveguiding. This kind of modification is thermally unstable and correlates to a weak distortion of the lattice. The electrooptic coefficient measured in a waveguide was found to be substantially reduced. The mechanisms underlying the structural modifications are discussed.


Pulse Duration Pulse Energy Scan Electron Micro Refractive Index Change Spherical Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Luo, D. Wang, C. Li, H. Jiang, H. Yang, Q. Gong, J. Opt. A: Pure Appl. Opt. 4, 105 (2002)CrossRefADSGoogle Scholar
  2. 2.
    G. Zhou, M. Gu, Appl. Phys. Lett. 87, 241107 (2005)CrossRefADSGoogle Scholar
  3. 3.
    L. Gui, B. Xu, T.C. Chong, IEEE Photon. Technol. Lett. 16, 1337 (2004)CrossRefADSGoogle Scholar
  4. 4.
    R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, Appl. Phys. Lett. 88, 111109 (2006)CrossRefADSGoogle Scholar
  5. 5.
    J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, Appl. Surf. Sci., unpublishedGoogle Scholar
  6. 6.
    J. Burghoff, C. Grebing, S. Nolte, A. Tünnermann, Appl. Phys. Lett. 89, 081108 (2006)CrossRefADSGoogle Scholar
  7. 7.
    A.H. Nejadmalayeri, P.R. Herman, Opt. Lett. 31, 2987 (2006)CrossRefADSGoogle Scholar
  8. 8.
    D.C. Deshpande, A.P. Malshe, E.A. Stach, V. Radmilovic, D. Alexander, D. Doerr, D. Hirt, J. Appl. Phys. 97, 074316 (2005)CrossRefADSGoogle Scholar
  9. 9.
    S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E.G. Gamaly, Y. Liu, O.A. Louchev, K. Kitamura, Appl. Phys. Lett. 89, 062903 (2006)CrossRefADSGoogle Scholar
  10. 10.
    A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Opt. Lett. 20, 73 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    W. Liu, O. Kosareva, I. Golubtsov, A. Iwasaki, A. Becker, V. Kandidov, S. Chin, Appl. Phys. B 76, 215 (2003)CrossRefADSGoogle Scholar
  12. 12.
    K. Yamada, W. Watanabe, T. Toma, K. Itoh, Opt. Lett. 26, 19 (2001)ADSGoogle Scholar
  13. 13.
    J.H. Marburger, Prog. Quantum. Electron. 4, 35 (1975)CrossRefADSGoogle Scholar
  14. 14.
    Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, Q. Gong, J. Opt. A: Pure Appl. Opt. 7, 655 (2005)CrossRefADSGoogle Scholar
  15. 15.
    D.M. Rayner, A. Naumov, P.B. Corkum, Opt. Express 13, 3208 (2005)CrossRefADSGoogle Scholar
  16. 16.
    L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Opt. Commun. 191, 333 (2001)CrossRefADSGoogle Scholar
  17. 17.
    F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 250, 164 (2006)CrossRefADSGoogle Scholar
  18. 18.
    W. Karthe, R. Müller, Integrierte Optik (Akademische Verlagsgesellschaft Geest und Portig K.-G., Leipzig, 1991), p. 268Google Scholar
  19. 19.
    I.P. Kaminow, E.H. Turner, R.L. Barns, J.L. Bernstein, J. Appl. Phys. 51, 4379 (1980)CrossRefADSGoogle Scholar
  20. 20.
    A. Zoubir, M. Richardson, L. Canioni, A. Brocas, L. Sarger, J. Opt. Soc. Am. B 22, 2138 (2005)CrossRefADSGoogle Scholar
  21. 21.
    D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, A. Tünnermann, Opt. Express 14, 2151 (2006)CrossRefADSGoogle Scholar
  22. 22.
    T. Gorelik, M. Will, S. Nolte, A. Tünnermann, U. Glatzel, Appl. Phys. A 76, 309 (2003)CrossRefADSGoogle Scholar
  23. 23.
    S. Nolte, J. Burghoff, M. Will, A. Tünnermann, Proc. SPIE 5340, 164 (2004)ADSGoogle Scholar
  24. 24.
    K. Buse, Appl. Phys. B 64, 273 (1997)CrossRefADSGoogle Scholar
  25. 25.
    U. Schlarb, K. Betzler, Phys. Rev. B 48, 15613 (1993)CrossRefADSGoogle Scholar
  26. 26.
    P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (University Press, Cambridge, 1994), p. 209Google Scholar
  27. 27.
    A. Muir, G. Daniell, C. Please, I. Wellington, S. Mailis, R. Eason, Appl. Phys. A 83, 389 (2006)CrossRefADSGoogle Scholar
  28. 28.
    J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, J. Appl. Phys. 87, 3199 (2000)CrossRefADSGoogle Scholar
  29. 29.
    H. Åhlfeldt, J. Webjörn, P.A. Thomas, S.J. Teat, J. Appl. Phys. 77, 4467 (1995)CrossRefADSGoogle Scholar
  30. 30.
    V.V. Atuchin, Nucl. Instrum. Methods Phys. Res. B 168, 498 (2000)CrossRefADSGoogle Scholar
  31. 31.
    H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, D.-Y. Shen, Appl. Opt. 40, 3759 (2001)ADSGoogle Scholar
  32. 32.
    J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, J. Appl. Phys. 84, 5180 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. Burghoff
    • 1
    Email author
  • H. Hartung
    • 1
  • S. Nolte
    • 1
  • A. Tünnermann
    • 1
    • 2
  1. 1.Institut für Angewandte PhysikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Fraunhofer-Institut für Optik und FeinmechanikJenaGermany

Personalised recommendations