Applied Physics A

, Volume 86, Issue 1, pp 11–18 | Cite as

Fabrication of high-aspect-ratio silicon nanostructures using near-field scanning optical lithography and silicon anisotropic wet-etching process

Rapid communication


A new process in which near-field scanning optical lithography (NSOL) is combined with anisotropic wet-etching of (110) silicon is developed for the fabrication of high-aspect-ratio (HAR) nanochannels. In the proposed process, NSOL is applied to produce nanopatterns on a commercial positive photoresist as in an optical lithography. The use of a commercial photoresist is an advantage of this process because it allows the direct application of many photoresists currently available without pretreatment, saving cost and time. A bare (110) silicon wafer coated with a thin Si3N4 layer, of approximately 10 nm thickness, is used as the sample and the photoresist is spincoated on the Si3N4 layer to a thickness of about 50–80 nm. Nanopatterning of the photoresist using a contact mode NSOL, transfer of the photoresist pattern onto the Si3N4 layer by reactive ion etching, and anisotropic wet etching of the silicon wafer using the patterned Si3N4 layer as an etch mask, lead to the intended HAR nanostructures. Fabrication of silicon nanochannels with a channel width below 150 nm and an aspect ratio greater than 3 is demonstrated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.S.S. Chien, W.F. Hsieh, S. Gwo, A.E. Vladar, J.A. Dagata, J. Appl. Phys. 91, 10044 (2002)CrossRefADSGoogle Scholar
  2. 2.
    F.S.S. Chien, C.L. Wu, Y.C. Chou, T.T. Chen, S. Gwo, Appl. Phys. Lett. 75, 2429 (1999)CrossRefADSGoogle Scholar
  3. 3.
    I. Fernandez-Cuesta, X. Borrise, F. Perez-Murano, Nanotechnology 16, 2731 (2005)CrossRefADSGoogle Scholar
  4. 4.
    S.A. Harfenist, M.M. Yazdanpanah, R.W. Cohn, J. Vac. Sci. Technol. B 21, 1176 (2003)CrossRefGoogle Scholar
  5. 5.
    B. Klehn, U. Kunze, J. Appl. Phys. 85, 3897 (1999)CrossRefADSGoogle Scholar
  6. 6.
    K.M. Chang, K.S. You, J.H. Lin, J.T. Sheu, J. Electrochem. Soc. 151, 679 (2004)CrossRefGoogle Scholar
  7. 7.
    K. Wiesauer, G. Springholz, J. Appl. Phys. 88, 7289 (2000)CrossRefADSGoogle Scholar
  8. 8.
    L. Santinacci, T. Djenizian, P. Schmuki, Appl. Phys. Lett. 79, 1882 (2001)CrossRefADSGoogle Scholar
  9. 9.
    J. Haaheim, R. Eby, M. Nelson, J. Fragala, B. Rosner, H. Zhang, G. Athas, Ultramicroscopy 103, 117 (2005)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, K. Salaita, J.H. Lim, C.A. Mirkin, Nano Lett. 2, 1389 (2002)CrossRefGoogle Scholar
  11. 11.
    H. Zhang, S.W. Chung, C.A. Mirkin, Nano Lett. 3, 43 (2003)MATHCrossRefGoogle Scholar
  12. 12.
    S. Sun, G.J. Leggett, Nano Lett. 4, 1381 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Sun, G.J. Leggett, Nano Lett. 2, 1223 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Sun, M. Montague, K. Critchley, M.S. Chen, W.J. Dressick, S.D. Evans, G.J. Leggett, Nano Lett. 6, 29 (2006)CrossRefGoogle Scholar
  15. 15.
    M.K. Herndon, R.T. Collins, R.E. Hollingsworth, P.R. Larson, M.B. Johnson, Appl. Phys. Lett. 74, 141 (1999)CrossRefADSGoogle Scholar
  16. 16.
    R. Riehn, A. Charas, J. Morgado, F. Cacialli, Appl. Phys. Lett. 82, 526 (2003)CrossRefADSGoogle Scholar
  17. 17.
    N. Landraud, J. Peretti, F. Chaput, G. Lampel, J.P. Boilot, K. Lahlil, V.I. Safarov, Appl. Phys. Lett. 79, 4562 (2001)CrossRefADSGoogle Scholar
  18. 18.
    S. Kwon, W. Chang, S. Jeong, Ultramicroscopy 105, 316 (2005)CrossRefGoogle Scholar
  19. 19.
    P. Royer, D. Barchiesi, G. Lerondel, R. Bachelot, Phil. Trans. R. Soc. London A 362, 821 (2004)CrossRefADSGoogle Scholar
  20. 20.
    H. Aoki, S. Ito, Thin Solid Films 449, 226 (2004)CrossRefGoogle Scholar
  21. 21.
    S. Wegscheider, A. Kirsch, J. Mlynek, G. Krausch, Thin Solid Films 264, 264 (1995)CrossRefGoogle Scholar
  22. 22.
    M.J. Madou, In: Fundamentals of Microfabrication (CRC Press LLC, 2002), pp. 215–217Google Scholar
  23. 23.
    K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, Sens. Actuators A 64, 87 (1998)CrossRefGoogle Scholar
  24. 24.
    Y.Y. Zhang, J. Zhang, G. Luo, X. Zhou, G.Y. Xie, T. Zhu, Z.F. Liu, Nanotechnology 16, 422 (2005)CrossRefADSGoogle Scholar
  25. 25.
    I. Zubel, I. Barycka, K. Kotowska, M. Kramkowska, Sens. Actuators A 87, 163 (2001)CrossRefGoogle Scholar
  26. 26.
    V. Grasso, V. Lambertini, P. Ghisellini, F. Valerio, E. Stura, P. Perlo, C. Nicolini, Nanotechnology 17, 795 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MechatronicsGwangju Institute of Science and TechnologyGwangjuRepublic of Korea

Personalised recommendations