Advertisement

Applied Physics A

, Volume 86, Issue 1, pp 49–54 | Cite as

Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining

  • D.W. Ward
  • E.R. Statz
  • K.A. Nelson
Article

Abstract

Fabrication of patterned materials in ferroelectric LiNbO3 and LiTaO3 crystals using femtosecond laser micromachining is presented and discussed. Damage feature sizes in the 10–100 μm range were achieved using 800-nm, 50-fs (FWHM) ultra-fast laser pulses with energies ranging from 10 μJ up to 350 μJ. Fabrication of polaritonic devices such as waveguides, resonators, focusing reflectors, diffractive and dispersive elements, photonic band gap materials, and other microstructures is demonstrated.

Keywords

Femtosecond Laser Numerical Aperture Laser Pulse Energy Crystal Thickness High Laser Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.S. Weis, T.K. Gaylord, Appl. Phys. A 16, 191 (1985)CrossRefADSGoogle Scholar
  2. 2.
    N. Mitsugi, H. Nagata, J. Vac. Sci. Technol. A 16, 2245 (1998)CrossRefADSGoogle Scholar
  3. 3.
    P.T. Brown, S. Mailis, I. Zergioti, R.W. Eason, Opt. Mater. 20, 125 (2002)CrossRefADSGoogle Scholar
  4. 4.
    S. Mailis, C. Riziotis, P.G.R. Smith, J.G. Scott, R.W. Eason, Appl. Surf. Sci. 206, 46 (2003)CrossRefGoogle Scholar
  5. 5.
    F.K. Christensen, M. Mullerborn, Appl. Phys. Lett. 66, 2772 (1995)CrossRefADSGoogle Scholar
  6. 6.
    F. Lacour, M.P.B. Courjal, A. Sabac, C. Bainer, M. Spajer, Opt. Mater. 27, 1421 (2005)CrossRefADSGoogle Scholar
  7. 7.
    K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, J.G. Fujimoto, Opt. Lett. 26, 1516 (2001)ADSGoogle Scholar
  8. 8.
    N.S. Stoyanov, D.W. Ward, T. Feurer, K.A. Nelson, Nat. Mater. 1, 95 (2002)CrossRefADSGoogle Scholar
  9. 9.
    N.S. Stoyanov, T. Feurer, D.W. Ward, K.A. Nelson, Appl. Phys. Lett. 82, 674 (2003)CrossRefADSGoogle Scholar
  10. 10.
    N.S. Stoyanov, T. Feurer, D.W. Ward, E.R. Statz, K.A. Nelson, Opt. Express 12, 2387 (2004)CrossRefADSGoogle Scholar
  11. 11.
    D.W. Ward, J.D. Beers, T. Feurer, E.R. Statz, N.S. Stoyanov, K.A. Nelson, Opt. Lett. 29, 2671 (2004)CrossRefADSGoogle Scholar
  12. 12.
    D.W. Ward, E.R. Statz, K.A. Nelson, R.M. Roth, R.M. Osgood, Appl. Phys. Lett. 86, 022908 (2004)CrossRefGoogle Scholar
  13. 13.
    D.C. Deshpande, A.P. Malshe, E.A. Stach, V. Radmilovic, D. Alexander, D. Doerr, D. Hirt, J. Appl. Phys. 97, 074316 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Levy, R.M. Osgood, R. Liu, L.E. Cross, G.S. Cargill, A. Kumar, H. Bakhru, Appl. Phys. Lett. 73, 2293 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations