Applied Physics A

, Volume 85, Issue 3, pp 255–263 | Cite as

Structural and electrical properties of core–shell structured GaP nanowires with outer Ga2O3 oxide layers

  • B.-K. Kim
  • H. Oh
  • E.-K. Jeon
  • S.-R. Kim
  • J.-R. Kim
  • J.-J. Kim
  • J.-O. Lee
  • C.J. Lee
Article

Abstract

This paper presents a review of our current experimental research on GaP nanowires grown by a vapor deposition method. Their structural, electrical, opto-electric transport, and gas-adsorption properties are reviewed. Our structural studies showed that a GaP nanowire consisted of a core–shell structure with a single-crystalline GaP core and an outer Ga2O3 layer. The individual GaP nanowires exhibited n-type field effects. Their electron mobilities were in the range of about 6 to 22 cm2/V s at room temperature. When the nanowires were illuminated with an ultraviolet light source, an abrupt increase of conductance occurred resulting from carrier generation in the nanowire and de-adsorption of adsorbed OH- or O2- ions on the Ga2O3 surface shell. Using an intrinsic Ga2O3 shell layer as a gate dielectric, top-gated GaP nanowire field-effect transistors were fabricated and characterized. Like other metal oxide nanowires, the carrier concentration and mobility of GaP nanowires were significantly affected by the surface molecular adsorption of OH or O2. The GaP nanowire devices were fabricated as sensors for NO2, NH3, and H2 gases by using a simple metal decoration technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.I. Berger, Semiconductor Materials (CRC Press, Boca Raton, FL, 1997)Google Scholar
  2. 2.
    Y.C. Kao, O. Eknoyan, J. Appl. Phys. 54, 2468 (1983)CrossRefADSGoogle Scholar
  3. 3.
    X.F. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000)CrossRefGoogle Scholar
  4. 4.
    C.C. Tang, S.S. Fan, M.L. de la Chapelle, H.Y. Dang, P. Li, Adv. Mater. 12, 1346 (2000)CrossRefGoogle Scholar
  5. 5.
    W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, S.T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)CrossRefGoogle Scholar
  6. 6.
    S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, C.J. Lee, Chem. Phys. Lett. 367, 717 (2003)CrossRefGoogle Scholar
  7. 7.
    R. Gupta, Q. Xiong, G.D. Mahan, P.C. Eklund, Nano Lett. 3, 1745 (2003)CrossRefGoogle Scholar
  8. 8.
    B.D. Liu, Y. Bando, C.C. Tang, F.F. Xu, Appl. Phys. A 80, 1585 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, Y. Lu, J. Phys. Chem. B 109, 19719 (2005)CrossRefGoogle Scholar
  10. 10.
    S.Y. Bae, H.W. Seo, H.C. Choi, D.S. Han, J. Park, J. Phys. Chem. B 109, 8496 (2005)CrossRefGoogle Scholar
  11. 11.
    Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Nano Lett. 2, 101 (2002)CrossRefGoogle Scholar
  12. 12.
    D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou, Appl. Phys. Lett. 82, 112 (2003)CrossRefADSGoogle Scholar
  13. 13.
    J.-R. Kim, H.M. So, J.W. Park, J.-J. Kim, J. Kim, C.J. Lee, S.C. Lyu, Appl. Phys. Lett. 80, 19 (2002)CrossRefGoogle Scholar
  14. 14.
    D.S. Han, S.Y. Bae, H.W. Seo, Y.J. Kang, J. Park, J. Phys. Chem. B 109, 9311 (2005)CrossRefGoogle Scholar
  15. 15.
    B.-K. Kim, J.-J. Kim, J.-O. Lee, K. Kong, H.J. Seo, C.J. Lee, Phys. Rev. B 71, 153313 (2005)CrossRefADSGoogle Scholar
  16. 16.
    J.-R. Kim, B.-K. Kim, J.-O. Lee, J. Kim, H.J. Seo, C.J. Lee, J.-J. Kim, Nanotechnology 15, 1397 (2004)CrossRefADSGoogle Scholar
  17. 17.
    Q.H. Li, Y.X. Liang, Q. Wan, T.H. Wang, Appl. Phys. Lett. 85, 6189 (2004)ADSGoogle Scholar
  18. 18.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  19. 19.
    Y. Cui, X. Duan, J. Hu, C.M. Lieber, J. Phys. Chem. B 104, 5213 (2000)CrossRefGoogle Scholar
  20. 20.
    W.I. Park, J.S. Kim, G.-C. Li, M.H. Bae, H.J. Lee, Appl. Phys. Lett. 85, 5052 (2004)CrossRefADSGoogle Scholar
  21. 21.
    M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettel, A. Thess, R.E. Smalley, Science 275, 1922 (1997)CrossRefGoogle Scholar
  22. 22.
    P. Feng, J.Y. Zhang, Q.H. Li, T.H. Wang, Appl. Phys. Lett. 88, 153107 (2006)CrossRefGoogle Scholar
  23. 23.
    Q.H. Li, Y.X. Liang, Q. Wan, T.H. Wang, Appl. Phys. Lett. 85, 6389 (2004)CrossRefADSGoogle Scholar
  24. 24.
    Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, J.G. Lu, Appl. Phys. Lett. 85, 5923 (2004)CrossRefADSGoogle Scholar
  25. 25.
    Z. Fan, J.G. Lu, Appl. Phys. Lett. 86, 123510 (2005)CrossRefADSGoogle Scholar
  26. 26.
    D. Kang, N. Park, J. Hyun, E. Bae, J. Ko, J. Kim, W. Park, Appl. Phys. Lett. 86, 093150 (2005)Google Scholar
  27. 27.
    D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou, Appl. Phys. Lett. 82, 112 (2003)CrossRefADSGoogle Scholar
  28. 28.
    F. Reti, M. Fleischer, J. Gerblinger, U. Lampe, E.B. Varhegyi, I.V. Perczel, H. Meixner, J. Giber, Sens. Actuators B 2627, 103 (1995)CrossRefGoogle Scholar
  29. 29.
    N. Barsan, M.S. Berderich, W. Goepel, Fresenius J. Anal. Chem. 365, 287 (1999)CrossRefGoogle Scholar
  30. 30.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)CrossRefADSGoogle Scholar
  31. 31.
    A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5, 667 (2005)CrossRefGoogle Scholar
  32. 32.
    B.-K. Kim, N. Park, P.S. Na, H.-M. So, J.-J. Kim, H. Kim, K.-J. Kong, H. Chang, B.-H. Ryu, Y. Choi, J.-O. Lee, Nanotechnology 17, 496 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • B.-K. Kim
    • 1
  • H. Oh
    • 1
  • E.-K. Jeon
    • 1
  • S.-R. Kim
    • 1
  • J.-R. Kim
    • 1
  • J.-J. Kim
    • 1
  • J.-O. Lee
    • 2
  • C.J. Lee
    • 3
  1. 1.Department of PhysicsChonbuk National UniversityJeonjuKorea
  2. 2.Advanced Material DivisionKorea Research Institute of Chemical EngineeringDaejonKorea
  3. 3.Department of Electrical EngineeringKorea UniversitySeoulKorea

Personalised recommendations