Advertisement

Applied Physics A

, Volume 85, Issue 3, pp 247–253 | Cite as

Synthesis and optical properties of silicon nanowires grown by different methods

  • A. Colli
  • S. Hofmann
  • A. Fasoli
  • A.C. Ferrari
  • C. Ducati
  • R.E. Dunin-Borkowski
  • J. Robertson
Article

Abstract

We review our recent results on the growth and characterization of silicon nanowires (SiNWs). Vapour-phase deposition techniques are considered, including chemical vapour deposition (CVD), plasma-enhanced chemical vapour deposition (PECVD), high-temperature annealing, and thermal evaporation. We present complementary approaches to SiNW production. We investigate the low-temperature (down to 300 °C) selective nucleation of SiNWs by Au-catalysed CVD and PECVD. Bulk production of SiNWs is obtained by thermal-vapour deposition from Si/SiO powders in a high-temperature furnace. In this case, SiNWs grow either by condensing on Au catalyst films, or by self-condensation of the vapour in a lower-temperature region of the furnace. Finally, we also achieve controlled growth by thermolysis of nanopatterned, multi-layered Si/Au thin-film precursors. The as-produced wires are compared in terms of yield, structural quality, and optical properties. Raman and photoluminescence spectra of SiNWs are discussed.

Keywords

Chemical Vapour Deposition Vapour Transport Electron Energy Loss Spectroscopy Silicon Nanowires Chemical Vapour Deposition Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)CrossRefADSGoogle Scholar
  2. 2.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)CrossRefADSGoogle Scholar
  3. 3.
    X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature 425, 274 (2003)CrossRefADSGoogle Scholar
  4. 4.
    V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gosele, Small 2, 85 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci. Technol. B 15, 554 (1997)CrossRefGoogle Scholar
  7. 7.
    S. Hofmann, C. Ducati, R.J. Neill, S. Piscanec, A.C. Ferrari, J. Geng, R.E. Dunin-Borkowski, J. Robertson, J. Appl. Phys. 94, 6005 (2003)CrossRefADSGoogle Scholar
  8. 8.
    Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Appl. Phys. Lett. 78, 2214 (2001)CrossRefADSGoogle Scholar
  9. 9.
    A.I. Hochbaum, R. Fan, R. He, P. Yang, Nano Lett. 5, 457 (2005)CrossRefGoogle Scholar
  10. 10.
    G. Zheng, W. Lu, S. Jin, C.M. Lieber, Adv. Mater. 16, 1890 (2004)CrossRefGoogle Scholar
  11. 11.
    Y. Cui, X. Duan, J. Hu, C.M. Lieber, J. Phys. Chem. B 104, 5213 (2000)CrossRefGoogle Scholar
  12. 12.
    A.M. Morales, C.M. Lieber, Science 279, 208 (1998)CrossRefADSGoogle Scholar
  13. 13.
    Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 72, 1835 (1998)CrossRefADSGoogle Scholar
  14. 14.
    D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, H.T. Zhou, S.Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)CrossRefADSGoogle Scholar
  15. 15.
    F.M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gosele, D.D. Ma, S.T. Lee, J. Electrochem. Soc. 151, G472 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Hu, Y. Bando, J. Zhan, Z. Liu, D. Golberg, S.P. Ringer, Adv. Mater. 17, 975 (2005)CrossRefGoogle Scholar
  17. 17.
    Y.F. Zhang, Y.H. Tang, C. Lam, N. Wang, C.S. Lee, I. Bello, S.T. Lee, J. Cryst. Growth 212, 115 (2000)CrossRefGoogle Scholar
  18. 18.
    Z.W. Pan, Z.R. Dai, L. Xu, S.T. Lee, Z.L. Wang, J. Phys. Chem. B 105, 2507 (2001)CrossRefGoogle Scholar
  19. 19.
    A. Colli, A. Fasoli, S. Hofmann, C. Ducati, J. Robertson, A.C. Ferrari, Nanotechnology 17, 1046 (2006)CrossRefADSGoogle Scholar
  20. 20.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)CrossRefGoogle Scholar
  21. 21.
    E.I. Givargizov, J. Cryst. Growth 31, 20 (1975)CrossRefGoogle Scholar
  22. 22.
    A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Appl. Phys. Lett. 84, 4176 (2004)CrossRefADSGoogle Scholar
  23. 23.
    K.A. Dick, K. Deppert, T. Martensson, B. Mandl, L. Samuelson, W. Seifert, Nano Lett. 5, 761 (2005)CrossRefGoogle Scholar
  24. 24.
    A. Colli, S. Hofmann, A.C. Ferrari, C. Ducati, F. Martelli, S. Rubini, S. Cabrini, A. Franciosi, J. Robertson, Appl. Phys. Lett. 86, 153103 (2005)CrossRefGoogle Scholar
  25. 25.
    R.Q. Zhang, Y. Lifshitz, S.T. Lee, Adv. Mater. 15, 635 (2003)CrossRefGoogle Scholar
  26. 26.
    G. Gu, M. Burghard, G.T. Kim, G.S. Dusberg, P.W. Chiu, V. Krstic, S. Roth, W.Q. Han, J. Appl. Phys. 90, 5747 (2001)CrossRefADSGoogle Scholar
  27. 27.
    Z.R. Dai, Z.W. Pan, Z.L. Wang, Adv. Funct. Mater. 13, 9 (2003)CrossRefGoogle Scholar
  28. 28.
    A. Fasoli, A. Colli, S. Hofmann, C. Ducati, J. Robertson, A.C. Ferrari, Phys. Status Solidi, in pressGoogle Scholar
  29. 29.
    Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nano Lett. 4, 433 (2004)CrossRefGoogle Scholar
  30. 30.
    Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Phys. Rev. B 61, 4518 (2000)CrossRefADSGoogle Scholar
  31. 31.
    D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nano Lett. 3, 1255 (2003)CrossRefGoogle Scholar
  32. 32.
    A. Colli, A.C. Ferrari, S. Hofmann, J.A. Zapien, Y. Lifshitz, S.T. Lee, S. Piscanec, M. Cantoro, J. Robertson, AIP Conf. Proc. 723, 445 (2004)ADSGoogle Scholar
  33. 33.
    S. Hofmann, C. Ducati, B. Kleinsorge, J. Robertson, Appl. Phys. Lett. 83, 135 (2003)CrossRefGoogle Scholar
  34. 34.
    I.H. Campbell, P.M. Fauchet, Solid State Commun. 58, 739 (1986)CrossRefGoogle Scholar
  35. 35.
    H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)CrossRefGoogle Scholar
  36. 36.
    S. Piscanec, M. Cantoro, A.C. Ferrari, A. Zapien, Y. Lifshitz, S.T. Lee, S. Hofmann, J. Robertson, Phys. Rev. B 68, 241312(R) (2003)CrossRefADSGoogle Scholar
  37. 37.
    S.-L. Zhang, W. Ding, Y. Yan, J. Qu, B. Li, L. Li, K.T. Yue, D. Yu, Appl. Phys. Lett. 81, 4446 (2002)CrossRefADSGoogle Scholar
  38. 38.
    R. Gupta, Q. Xiong, C.K. Adu, U.J. Kim, P.C. Eklund, Nano Lett. 3, 627 (2003)CrossRefGoogle Scholar
  39. 39.
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)CrossRefADSGoogle Scholar
  40. 40.
    L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)CrossRefADSGoogle Scholar
  41. 41.
    F. Koch, V. Petrova-Koch, T. Muschik, J. Luminesc. 57, 271 (1993)CrossRefGoogle Scholar
  42. 42.
    P.M. Fauchet, J. Luminesc. 70, 294 (1996)CrossRefGoogle Scholar
  43. 43.
    D.V. Lang, H.G. Grimmeiss, E. Meijer, M. Jaros, Phys. Rev. B 22, 3917 (1980)CrossRefADSGoogle Scholar
  44. 44.
    X.H. Sun, N.B. Wong, C.P. Li, S.T. Lee, T.K. Sham, Appl. Phys. Lett. 96, 3447 (2004)Google Scholar
  45. 45.
    M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delarue, Phys. Rev. Lett. 82, 197 (1999)CrossRefADSGoogle Scholar
  46. 46.
    Z.G. Bai, D.P. Yu, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, S.Q. Feng, J. Xu, L.P. You, Mater. Sci. Eng. B 72, 117 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Colli
    • 1
  • S. Hofmann
    • 1
  • A. Fasoli
    • 1
  • A.C. Ferrari
    • 1
  • C. Ducati
    • 2
  • R.E. Dunin-Borkowski
    • 2
  • J. Robertson
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations