Applied Physics A

, Volume 85, Issue 3, pp 217–225 | Cite as

Germanium nanowires: from synthesis, surface chemistry, and assembly to devices



A low temperature synthesis of single crystalline Ge nanowires via chemical vapor deposition is enabled by balancing the feedstock and its diffusion in growth seeds. Understanding and optimizing the synthetic chemistry leads to deterministic nanowire growth at well-defined locations and bulk quantity production of homogeneous nanowires, both of which greatly facilitate the assembly toward parallel nanowire arrays. Surface chemistry studies reveal that p- and n-type Ge nanowires undergo different oxidation routes and the surface oxide induced states cause opposite band bending for nanowires with different doping. Furthermore, long chain alkanethiols form a dense and uniform protection layer on Ge nanowire surfaces and therefore afford excellent oxidation resistance. Finally, high performance field effect transistors are constructed on Ge nanowires with both thermally grown SiO2 and atomic layer deposited HfO2 as gate dielectrics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. (2005)Google Scholar
  2. 2.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  3. 3.
    H.J. Dai, Acc. Chem. Res. 35, 1035 (2002)CrossRefGoogle Scholar
  4. 4.
    C.M. Lieber, MRS Bull. 28, 486 (2003)Google Scholar
  5. 5.
    Y.N. Xia, P.D. Yang, Adv. Mater. 15, 351 (2003)CrossRefGoogle Scholar
  6. 6.
    P.D. Yang, MRS Bull. 30, 85 (2005)Google Scholar
  7. 7.
    H. Dai, Surf. Sci. 500, 218 (2002)CrossRefGoogle Scholar
  8. 8.
    J.R. Heath, F.K. Legoues, Chem. Phys. Lett. 208, 263 (1993)CrossRefADSGoogle Scholar
  9. 9.
    Y.Y. Wu, P.D. Yang, Chem. Mater. 12, 605 (2000)CrossRefGoogle Scholar
  10. 10.
    G. Gu, M. Burghard, G.T. Kim, G.S. Dusberg, P.W. Chiu, V. Krstic, S. Roth, W.Q. Han, J. Appl. Phys. 90, 5747 (2001)CrossRefADSGoogle Scholar
  11. 11.
    T. Hanrath, B.A. Korgel, J. Am. Chem. Soc. 124, 1424 (2002)CrossRefGoogle Scholar
  12. 12.
    D.W. Wang, H.J. Dai, Angew. Chem. Int. Edit. 41, 4783 (2002)CrossRefGoogle Scholar
  13. 13.
    D.W. Wang, R. Tu, L. Zhang, H.J. Dai, Angew. Chem. Int. Edit. 44, 2925 (2005)CrossRefGoogle Scholar
  14. 14.
    Y.Y. Wu, P.D. Yang, J. Am. Chem. Soc. 123, 3165 (2001)CrossRefGoogle Scholar
  15. 15.
    ASM Handbook, Alloy Phase Diagram, vol. 3 (1990)Google Scholar
  16. 16.
    P. Baffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)CrossRefADSGoogle Scholar
  17. 17.
    F. Ercolessi, W. Andreoni, E. Tosatti, Phys. Rev. Lett. 66, 911 (1991)CrossRefADSGoogle Scholar
  18. 18.
    M. Wautelet, J.P. Dauchot, M. Hecq, Nanotechnology 11, 6 (2000)CrossRefADSGoogle Scholar
  19. 19.
    N.R. Franklin, Y. Li, R.J. Chen, A. Javey, H. Dai, Appl. Phys. Lett. 79, 4571 (2001)CrossRefADSGoogle Scholar
  20. 20.
    D.W. Wang, Q. Wang, A. Javey, R. Tu, H.J. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Appl. Phys. Lett. 83, 2432 (2003)CrossRefADSGoogle Scholar
  21. 21.
    D.W. Wang, Y.L. Chang, Q. Wang, J. Cao, D.B. Farmer, R.G. Gordon, H.J. Dai, J. Am. Chem. Soc. 126, 11602 (2004)CrossRefGoogle Scholar
  22. 22.
    J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 287, 622 (2000)CrossRefADSGoogle Scholar
  23. 23.
    Y. Cui, Q. Wei, H. Park, C. Lieber, Science 293, 1289 (2001)CrossRefADSGoogle Scholar
  24. 24.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2001)Google Scholar
  25. 25.
    R.H. Kingston, Semiconductor Surface Physics (University of Pennsylvania Press, Philadelphia, 1957)Google Scholar
  26. 26.
    J.S. Hovis, R.J. Hamers, C.M. Greenlief, Surf. Sci. 440, L815 (1999)CrossRefGoogle Scholar
  27. 27.
    N. Tabet, M. Faiz, N.M. Hamdan, Z. Hussain, Surf. Sci. 523, 68 (2003)CrossRefGoogle Scholar
  28. 28.
    X.J. Zhang, G. Xue, A. Agarwal, R. Tsu, M.A. Hasan, J.E. Greene, A. Rockett, J. Vac. Sci. Technol. 11, 2553 (1993)CrossRefADSGoogle Scholar
  29. 29.
    K. Prabhakaran, F. Maeda, Y. Watanabe, T. Ogino, Thin Solid Films 369, 289 (2000)CrossRefGoogle Scholar
  30. 30.
    N. Tabet, J. Electron. Spectrosc. Relat. Phenom. 114, 415 (2001)CrossRefGoogle Scholar
  31. 31.
    C.O. Chui, S. Ramanathan, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, IEEE Electr. Dev. Lett. 23, 473 (2002)CrossRefGoogle Scholar
  32. 32.
    G.W. Cullen, J.A. Amick, D. Gerlich, J. Electrochem. Soc. 109, 124 (1962)Google Scholar
  33. 33.
    J.L. He, Z.H. Lu, S.A. Mitchell, D.D.M. Wayner, J. Am. Chem. Soc. 120, 2660 (1998)CrossRefGoogle Scholar
  34. 34.
    K. Choi, J.M. Buriak, Langmuir 16, 7737 (2000)CrossRefGoogle Scholar
  35. 35.
    S.M. Han, W.R. Ashurst, C. Carraro, R. Maboudian, J. Am. Chem. Soc. 123, 2422 (2001)CrossRefGoogle Scholar
  36. 36.
    Oxide was detected on C12 alkanethiol passivated Ge NWs after 2 days of air exposureGoogle Scholar
  37. 37.
    P.E. Laibinis, G.M. Whitesides, J. Am. Chem. Soc. 114, 9022 (1992)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, A. Chan, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001)CrossRefADSGoogle Scholar
  39. 39.
    A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Nano Lett. 3, 1229 (2003)CrossRefGoogle Scholar
  40. 40.
    D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nano. Lett. 3, 1255 (2003)CrossRefGoogle Scholar
  41. 41.
    D.W. Wang, Y.L. Chang, Z. Liu, H.J. Dai, J. Am. Chem. Soc. 127, 11871 (2005)CrossRefGoogle Scholar
  42. 42.
    X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409, 66 (2001)CrossRefADSGoogle Scholar
  43. 43.
    S. Ramo, J.R. Whinnery, T.V. Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994)Google Scholar
  44. 44.
    S.C. Martin, L.M. Hitt, J.J. Rosenberg, IEEE Electr. Dev. Lett. 10, 325 (1989)CrossRefGoogle Scholar
  45. 45.
    M. Leskela, M. Ritala, Thin Solid Films 409, 138 (2002)CrossRefGoogle Scholar
  46. 46.
    H. Kim, P.C. McIntyre, K.C. Saraswat, Appl. Phys. Lett. 82, 106 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations