Applied Physics A

, Volume 85, Issue 2, pp 125–134 | Cite as

Review of some lesser-known applications of piezoelectric and pyroelectric polymers

Invited paper


The piezoelectric effect was first observed in polyvinylidene fluoride polymer (PVDF) in 1969, and the pyroelectric effect was found several years later. A number of additional ferroelectric polymers have been discovered since that time including the copolymer PVDF with trifluoroethylene (P(VDF-TrFE)), and the odd-numbered nylons. A large number of applications of piezoelectricity and pyroelectricity have been developed. The magnitudes of the effects in polymers are much lower than those of ferroelectric ceramics (an exception is the piezoelectric effect in porous polymers). However, other factors make these very desirable materials for applications. The polymers have low permittivities, low acoustic impedances and low thermal conductivities. They are available in large area sheets, flexible, and relatively low in cost. Major applications include microphones and loudspeakers, ultrasonic devices, SAW transducers, actuators, single-element infrared detectors and many others. This review will describe some of the lesser-known applications of these materials in the areas of tactile devices, energy conversion, porous polymers, property measurement, pyroelectric infrared sensors, shock sensors and space science.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.B. Lang, Sourcebook of Pyroelectricity (Gordon & Breach Science Publishers, London, 1974)Google Scholar
  2. 2.
    S.B. Lang, Brit. Ceram. Trans. J. 103, 65 (2004)CrossRefGoogle Scholar
  3. 3.
    S.B. Lang, Phys. Today 58, 31 (2005)CrossRefGoogle Scholar
  4. 4.
    J. Curie, P. Curie, C.R. Acad. Sci. 91, 294 (1880)Google Scholar
  5. 5.
    H. Kawai, Japan J. Appl. Phys. 8, 975 (1969)CrossRefADSGoogle Scholar
  6. 6.
    J.G. Bergman, J.H. McFee, G.R. Crane, Appl. Phys. Lett. 18, 203 (1971)CrossRefADSGoogle Scholar
  7. 7.
    K. Nakamura, Y. Wada, J. Polym. Sci. A 9, 161 (1971)CrossRefGoogle Scholar
  8. 8.
    S.B. Lang, Ferroelectrics 308, 193 (2004)CrossRefGoogle Scholar
  9. 9.
    M.A. Razian, M.G. Pepper, IEEE Trans. Neural Syst. Rehabil. Eng. 11, 288 (2003)CrossRefGoogle Scholar
  10. 10.
    Z. Jiang, K. Funai, M. Tanaka, S. Chonan, J. Intell. Mater. Syst. Struct. 10, 481 (1999)CrossRefGoogle Scholar
  11. 11.
    M. Tanaka, J. Mater. Process. Technol. 108, 253 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Tanaka, L.J. Luc, T. Hachiro, K. Katsuko, S. Chonan, Skin Res. Technol. 9, 131 (2003)CrossRefGoogle Scholar
  13. 13.
    M. Tanaka, M. Furubayashi, Y. Tanahashi, S. Chonan, Smart Mater. Struct. 9, 878 (2000)CrossRefADSGoogle Scholar
  14. 14.
    J. Dargahi, J. Mech. Des. 124, 576 (2002)CrossRefGoogle Scholar
  15. 15.
    J. Dargahi, M. Parameswaran, S. Payandeh, J. Microelectromech. Syst. 9, 329 (2000)CrossRefGoogle Scholar
  16. 16.
    D.H. Kim, B. Kim, H. Kang, Microsyst. Technol. 10, 275 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    G.W. Taylor, J.R. Burns, S.M. Kammann, W.B. Powers, T.R. Welsh, IEEE J. Oceanic Eng. 26, 539 (2001)CrossRefGoogle Scholar
  18. 18.
    M. Ikura, Ferroelectrics 267, 403 (2002)Google Scholar
  19. 19.
    J.L. Yu, M. Ikura, J. Power Energy Syst., in pressGoogle Scholar
  20. 20.
    R.B. Olsen, D.A. Bruno, M. Brisco, J. Appl. Phys. 58, 4709 (1985)CrossRefADSGoogle Scholar
  21. 21.
    N.S. Shenck, J.A. Paradiso, IEEE Micro 21, 30 (2001)CrossRefGoogle Scholar
  22. 22.
    J.W. Sohn, S.B. Choi, D.Y. Lee, Proc. Inst. Mech. Eng. C 219, 429 (2005)CrossRefGoogle Scholar
  23. 23.
    G.S. Neugschwandter, R. Schwodiauer, S. Bauer-Gogonea, S. Bauer, J. Appl. Phys. 89, 4503 (2001)CrossRefADSGoogle Scholar
  24. 24.
    S. Bauer, R. Gerhard-Multhaupt, G.M. Sessler, Phys. Today 57, 34 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Wegener, S. Bauer, Chem. Phys. Chem. 6, 1014 (2005)Google Scholar
  26. 26.
    Screentec, Ltd., Oulu, Finland, http://www.screentec.comGoogle Scholar
  27. 27.
    Emfit Ltd., Vaajakoskiv, Finland, http://www.emfit.comGoogle Scholar
  28. 28.
    B-Band Ltd., Vaajakoski, Finland, http://www.b-band.comGoogle Scholar
  29. 29.
    L.M. Heikkinen, H.E. Panula, T. Lyyra, H. Olkkonen, I. Kiviranta, T. Nevalainen, H.J. Helminen, Scand. J. Lab. Anim. Sci. 24, 85 (1997)Google Scholar
  30. 30.
    F. Bauer, J. Phys. III 1, 427 (1991)ADSGoogle Scholar
  31. 31.
    F. Bauer, Nucl. Instrum. Methods Phys. Res. B 105, 212 (1995)CrossRefADSGoogle Scholar
  32. 32.
    F. Bauer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1448 (2000)CrossRefGoogle Scholar
  33. 33.
    A. Mandelis, Chem. Phys. Lett. 108, 388 (1984)CrossRefADSGoogle Scholar
  34. 34.
    S.B. Lang, Key Eng. Mater. 9293, 83 (1994)CrossRefGoogle Scholar
  35. 35.
    H. Coufal, Appl. Phys. Lett. 45, 516 (1984)CrossRefADSGoogle Scholar
  36. 36.
    C. Wang, A. Mandelis, F.J. Garcia, Sens. Actuators B 60, 228 (1999)CrossRefGoogle Scholar
  37. 37.
    C. Wang, A. Mandelis, Rev. Sci. Instrum. 70, 2372 (1999)CrossRefADSGoogle Scholar
  38. 38.
    R. Kohler, N. Neumann, G. Hofmann, Sens. Actuators A 45, 209 (1994)CrossRefGoogle Scholar
  39. 39.
    N. Neumann, R. Kohler, R. Gottfried-Gottfried, N. He, Integr. Ferroelectr. 11, 1 (1995)CrossRefGoogle Scholar
  40. 40.
    T.D. Binnie, H.J. Weller, Z. He, D. Setiadi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1413 (2000)CrossRefGoogle Scholar
  41. 41.
    A.J. Tuzzolino, T.E. Economou, R.B. McKibben, J.A. Simpson, J.A.M. McDonnell, M.J. Burchell, B.A.M. Vaughan, P. Tsou, M.S. Hanner, B.C. Clark, D.E. Brownlee, J. Geophys. Res. 108, 8115 (2003)CrossRefGoogle Scholar
  42. 42.
    D.E. Brownlee, P. Tsou, J.D. Anderson, M.S. Hanner, R.L. Newburn, Z. Sekanina, B.C. Clark, F. Horz, M.E. Zolensky, J. Kissel, J.A.M. McDonnell, S.A. Sandford, A.J. Tuzzolino, J. Geophys. Res. 108, 8111 (2003)CrossRefGoogle Scholar
  43. 43.
    A.J. Tuzzolino, T.E. Economou, B.C. Clark, P. Tsou, D.E. Brownlee, S.F. Green, J.A.M. McDonnell, N. McBride, M.T.S.H. Colwell, Science 304, 1776 (2004)CrossRefADSGoogle Scholar
  44. 44.
    M.A. Perkins, J.A. Simpson, A.J. Tuzzolino, Nucl. Instrum. Methods Phys. Res. A 239, 310 (1985)CrossRefADSGoogle Scholar
  45. 45.
    J.A. Simpson, R.Z. Sagdeev, A.J. Tuzzolino, M.A. Perkins, L.V. Ksanfomality, D. Rabinowitz, G.A. Lentz, V.V. Afonin, J. Ero, E. Keppler, J. Kosorokov, E. Petrova, L. Szabo, G. Umlauft, Nature 321, 278 (1986)CrossRefADSGoogle Scholar
  46. 46.
    A.J. Tuzzolino, Adv. Space Res. 17, 123 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Dept. of Chemical EngineeringBen-Gurion University of the NegevBeer ShevaIsrael
  2. 2.Dept. of PhysicsPrince of Songkla UniversityHatyaiThailand

Personalised recommendations