Advertisement

Applied Physics A

, Volume 85, Issue 3, pp 311–315 | Cite as

Growth peculiarities during vapor–liquid–solid growth of silicon nanowhiskers by electron-beam evaporation

  • V. Sivakov
  • G. Andrä
  • C. Himcinschi
  • U. Gösele
  • D.R.T. Zahn
  • S. Christiansen
Article

Abstract

One-dimensional (1D) silicon (Si) nanostructures were grown by electron-beam evaporation catalyzed by gold nanoparticles on silicon substrates following the vapor–liquid–solid growth mechanism. We report three strikingly different growth morphologies of the 1D Si nanostructures and discuss their formation. The morphology of the silicon nanostructures strongly depends on gold layer thickness, annealing temperature before deposition and growth temperature during the deposition. The formation of nanoscale silicon features such as nanobelts, nanowires and nanowhiskers was observed. The nanoscale silicon features were characterized by transmission and scanning electron microscopy using imaging, diffraction and energy-dispersive X-ray spectroscopy, atomic force microscopy and UV micro-Raman spectroscopy.

Keywords

Loadlock Chamber Gold Layer Thickness Solid Growth Mechanism Growth Peculiarity Silicon Nanowhiskers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2001)CrossRefGoogle Scholar
  2. 2.
    M.S. Gudiksen, J. Wang, C.M. Lieber, J. Phys. Chem. B 105, 4062 (2001)CrossRefGoogle Scholar
  3. 3.
    Y. Cui, X. Duan, J. Hu, C.M. Lieber, J. Phys. Chem. B 104, 5213 (2000)CrossRefGoogle Scholar
  4. 4.
    X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Y. Cui, C.M. Lieber, Science 291, 851 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, C.M. Lieber, Science 294, 1313 (2001)CrossRefADSGoogle Scholar
  7. 7.
    Y. Huang, X. Duan, C.M. Lieber, Small 1, 142 (2005)CrossRefGoogle Scholar
  8. 8.
    X. Duan, Y. Huang, R. Argarawal, C.M. Lieber, Nature 421, 241 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Y. Wu, H. Yan, P. Yang, Top. Catal. 19, 197 (2002)CrossRefGoogle Scholar
  10. 10.
    O.H. Elibol, D. Morisette, D. Akin, J.P. Denton, R. Bashir, Appl. Phys. Lett. 83, 4613 (2003)CrossRefADSGoogle Scholar
  11. 11.
    E.I. Givargizov, J. Cryst. Growth 31, 20 (1975)CrossRefGoogle Scholar
  12. 12.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)CrossRefGoogle Scholar
  13. 13.
    C.M. Lieber, MRS Bull. 28, 486 (2003)Google Scholar
  14. 14.
    T.I. Kamins, R.S. Williams, D.P. Basile, T. Hesjedal, J.S. Harris, J. Appl. Phys. 89, 1008 (2001)CrossRefADSGoogle Scholar
  15. 15.
    J.R. Heath, F.K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)CrossRefADSGoogle Scholar
  16. 16.
    T. Hanrath, B.A. Korgel, J. Am. Chem. Soc. 124, 1424 (2002)CrossRefGoogle Scholar
  17. 17.
    Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Phys. Rev. B 61, 4518 (2000)CrossRefADSGoogle Scholar
  18. 18.
    L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)CrossRefGoogle Scholar
  20. 20.
    M.K. Sunkara, S. Sharma, R. Mirand, Appl. Phys. Lett. 79, 1546 (2001)CrossRefADSGoogle Scholar
  21. 21.
    Y. Civale, L.K. Nanver, P. Hadley, E.J.G. Goudena, in W. Krautschneider@C. Claeys (eds.), SAFE@ProRISC 2004 Workshop, Veldhoven, The Netherlands, November 25–26th, 2004, Proceedings of Semiconductor Advances for Future Electronics (2004), p.  692Google Scholar
  22. 22.
    L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, T.Y. Tan, U. Gösele, Appl. Phys. Lett. 84, 4968 (2004)CrossRefADSGoogle Scholar
  23. 23.
    M. Zacharias, P. Werner, Phys. J. 47, 29 (2005)Google Scholar
  24. 24.
    S. Sharma, T.I. Kamins, R.S. Williams, Appl. Phys. A 80, 1225 (2005)CrossRefGoogle Scholar
  25. 25.
    V. Sivakov, G. Andrä, U. Gösele, S. Christiansen, Phys. Status Solidi A (2006), DOI 10.1002/pssa20622156Google Scholar
  26. 26.
    V. Sivakov, G. Andrä, R. Scholz, R. Schneider, U. Gösele, S. Christiansen, unpublishedGoogle Scholar
  27. 27.
    G. Madras, B. McCoy, J. Chem. Phys. 117, 8042 (2002)CrossRefADSGoogle Scholar
  28. 28.
    I.H. Campbell, P.M. Fauchet, Solid State Commun. 58, 739 (1986)CrossRefGoogle Scholar
  29. 29.
    R. Gupta, Q. Xiong, C.K. Adu, U.J. Kim, P.C. Eklund, Nano Lett. 3, 627 (2003)CrossRefGoogle Scholar
  30. 30.
    S. Hofmann, C. Ducati, R.J. Neill, S. Piscanec, A.C. Ferrari, J. Geng, R.E. Dunin Borkowski, J. Robertson, J. Appl. Phys. 94, 6005 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • V. Sivakov
    • 1
    • 2
  • G. Andrä
    • 2
  • C. Himcinschi
    • 1
  • U. Gösele
    • 1
  • D.R.T. Zahn
    • 3
  • S. Christiansen
    • 1
    • 4
  1. 1.Max Planck Institute of Microstructure PhysicsHalleGermany
  2. 2.Institute of Physical High TechnologyJenaGermany
  3. 3.Physics DepartmentTU ChemnitzChemnitzGermany
  4. 4.Physics DepartmentMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations