Applied Physics A

, Volume 86, Issue 1, pp 23–29 | Cite as

Realistic limits to computation I. Physical limits

  • G.F. Cerofolini


The ultimate limits of computation have been determined in the hypothesis that computation is a physical process occurring in a medium immersed in a thermal reservoir at assigned (room) temperature and thus obeying the underlying physical laws. Whichever is the information carrier, the computational figure of merit is inherently reduced by the need of transforming the microscopic computation outcome into a macroscopic event. The resulting loss of performance has been estimated in the hypothesis that the microscopic state is sensed with an apparatus undergoing repeated measurements.


Power Dissipation Nonvolatile Memory Information Carrier Thermal Reservoir Microscopic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Chiabrera, E. Di Zitti, F. Costa, G.M. Bisio, J. Phys. D Appl. Phys. 22, 1571 (1989)CrossRefADSGoogle Scholar
  2. 2.
    R.P. Feynman, ‘There’s plenty of room at the bottom: an invitation to enter a new world of physics’, lecture delivered on 29 December 1959 at the annual meeting of the American Physical Society. A transcript of his talk is available online at Scholar
  3. 3.
    R.W. Landauer, IBM J. Res. Dev. 5, 183 (1961)MathSciNetzbMATHGoogle Scholar
  4. 4.
    C.H. Bennett, IBM J. Res. Dev. 17, 525 (1973)zbMATHCrossRefGoogle Scholar
  5. 5.
    R.W. Keyes, Science 195, 1230 (1977)CrossRefADSGoogle Scholar
  6. 6.
    R.W. Keyes, Proc. IEEE 69, 267 (1981)CrossRefGoogle Scholar
  7. 7.
    E. Fredkin, T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982)CrossRefGoogle Scholar
  9. 9.
    W.H. Zurek, Nature 341, 119 (1989)CrossRefADSGoogle Scholar
  10. 10.
    R.W. Keyes, in Molecular Electronics and Molecular Electronic Devices, ed. by K. Sienicki (CRC, Boca Raton, FL, 1993), p. 1Google Scholar
  11. 11.
    R.P. Feynman, Lectures on Computation, ed. by J.G. Hey, R.W. Allen (Addison Wesley, Reading, MA, 1995), Chap. 5, p. 137Google Scholar
  12. 12.
    S. Lloyd, Nature 406, 1047 (2000)CrossRefGoogle Scholar
  13. 13.
    J.D. Meindl, J.A. Davis, IEEE J. Solid State Circuits 35, 1515 (2000)CrossRefGoogle Scholar
  14. 14.
    J.A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S.J. Souri, K. Banerjee, K.C. Saraswat, A. Rahman, R. Reif, J.D. Meindl, Proc. IEEE 89, 305 (2001)CrossRefGoogle Scholar
  15. 15.
    V.V. Zhirnov, R.K. Cavin, J.A. Hutchby, G.I. Bourianoff, Proc. IEEE 91, 1934 (2003)CrossRefGoogle Scholar
  16. 16.
    P.A. Packan, Science 285, 2079 (1999)CrossRefGoogle Scholar
  17. 17.
    P.S. Peercy, Nature 406, 1023 (2000)CrossRefGoogle Scholar
  18. 18.
    R.W. Keyes, Proc. IEEE 89, 227 (2001)CrossRefGoogle Scholar
  19. 19.
    D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, H.-S.P. Wong, Proc. IEEE 89, 259 (2001)CrossRefGoogle Scholar
  20. 20.
    J.A. Hutchby, G.I. Bourianoff, V.V. Zhirnov, J.E. Brewer, IEEE Circuits Dev. Mag. 18, 28 (2002)CrossRefGoogle Scholar
  21. 21.
    Y. Aharonov, D. Bohm, Phys. Rev. 122, 1649 (1961)zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. 22.
    R.F. O’Connell, IEEE Trans. Nanotechnol. 4, 77 (2005)CrossRefADSGoogle Scholar
  23. 23.
    N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, J.R. Heath, Science 300, 112 (2003)CrossRefADSGoogle Scholar
  24. 24.
    G.F. Cerofolini, G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo, Nanotechnology 16, 1040 (2005)CrossRefADSGoogle Scholar
  25. 25.
    G.F. Cerofolini, Nanotechnol. E-Newslett. 7, 5 (2005)Google Scholar
  26. 26.
    R.L. McCreery, Chem. Mater. 16, 4477 (2004)CrossRefGoogle Scholar
  27. 27.
    G.F. Cerofolini, Appl. Phys. A 86 (2006), DOI: 10.1007/s00339-006-3736-4Google Scholar
  28. 28.
    J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, Science 280, 1716 (1998)CrossRefGoogle Scholar
  29. 29.
    Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath, Chem. Phys. Chem. 3, 519 (2002)Google Scholar
  30. 30.
    G.F. Cerofolini, G. Ferla, J. Nanopart. Res. 4, 185 (2002)CrossRefGoogle Scholar
  31. 31.
    G.F. Cerofolini, D. Mascolo, Semicond. Sci. Technol. 21, 1315 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Post-Silicon TechnologySTMicroelectronicsMilanItaly

Personalised recommendations