Advertisement

Applied Physics A

, Volume 85, Issue 1, pp 53–62 | Cite as

Iron-carbon nanoparticles prepared by CO2 laser pyrolysis of toluene and iron pentacarbonyl

  • C. Jäger
  • H. Mutschke
  • F. Huisken
  • R. Alexandrescu
  • I. Morjan
  • F. Dumitrache
  • R. Barjega
  • I. Soare
  • B. David
  • O. Schneeweiss
Article

Abstract

CO2 laser induced co-pyrolysis of toluene and iron pentacarbonyl in the presence of an ethylene sensitizer was used to produce iron-carbon nanostructures containing cementite Fe3C as the major component. The passivated Fe-C nanocomposites were characterized by several complementary analytical methods. Good agreement is found between the results of X-ray diffraction, Mössbauer spectroscopy and high-resolution transmission electron microscopy techniques which show that besides cementite, iron, and iron oxides, traces of other carbides are also present. Specific morphological aspects of the nanograins encased in a mostly disordered and quasi-amorphous carbon matrix are revealed. The simultaneous presence of rather small crystallites (mean diameter between 3–6 nm), identified as possible Fe3C/α-Fe and iron oxide (maghemite/magnetite) phases and of single-phase larger crystallites (10–13 nm mean diameter), identified as Fe3C is illustrated. Raman spectroscopy seems to confirm maghemite as the iron oxide phase present in the iron-carbon nanopowders. The level of oxidation mainly induced by powder passivation is roughly estimated by FTIR spectroscopy and leads to iron oxide contents between 11–17 wt. %. The catalytic role of iron nanoparticles in the pyrolyzed system is addressed in connection with nanocarbon samples obtained in the absence of an iron donor.

Keywords

Iron Oxide Cementite Iron Nanoparticles Prodan Iron Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X.L. Dong, Z.D. Zhang, Q.F. Xiao, X.G. Zhao, Y.C. Chuang, S.R. Jin, W.M. Sun, Z.J. Li, Z.X. Zheng, H. Yang, J. Mater. Sci. 33, 1915 (1998)CrossRefGoogle Scholar
  2. 2.
    T. Majima, Y. Miyhara, K. Haneda, M. Takami, Japan J. Appl. Phys. 33, L223 (1994)CrossRefADSGoogle Scholar
  3. 3.
    F. Huisken, B. Kohn, R. Alexandrescu, I. Morjan, J. Chem. Phys. 113, 1 (2000)CrossRefGoogle Scholar
  4. 4.
    M.P. Morales, S. Veintemillas-Verdaguer, M.I. Montero, C.J. Serna, A. Roig, L. Casas, B. Martinez, F. Sandiumenge, Chem. Mater. 11, 3058 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Tang, M. Myers, K.A. Bosnick, L.E. Brus, J. Phys. Chem. B 107, 7501 (2003)CrossRefGoogle Scholar
  6. 6.
    I. Morjan, R. Alexandrescu, I. Soare, F. Dumitrache, I. Sandu, I. Voicu, A. Crunteanu, E. Vasile, V. Ciupina, S. Martelli, Mater. Sci. Eng. C 1020, 1 (2002)Google Scholar
  7. 7.
    R.A. Fiato, G.W. Rice, S. Miseo, S.L. Soled, United States Patent 4,637,753 (1987)Google Scholar
  8. 8.
    X.X. Bi, B. Granguly, G.P. Huffman, F.E. Huggins, M. Endo, P.C. Ecklund, J. Mater. Res. 8, 1666 (1993)CrossRefADSGoogle Scholar
  9. 9.
    J.M. Stencel, P.C. Ecklund, X.X. Bi, F.J. Derbyshire, Catal. Today 15, 285 (1993)CrossRefGoogle Scholar
  10. 10.
    R. Alexandrescu, S. Cojocaru, A. Crunteanu, I. Morjan, I. Voicu, L. Diamandescu, F. Vasiliu, F. Huisken, B. Kohn, J. Phys. IV France 9, Pr8 (1999)Google Scholar
  11. 11.
    S.I. Nikitenko, Y. Koltypin, O. Palchik, I. Felner, X.N. Xu, A. Gedanken, Angew. Chem. Int. Edit. 40, 4447 (2001)CrossRefGoogle Scholar
  12. 12.
    J.P. Hare, W.K. Hsu, H.W. Kroto, A. Lapas, K. Prassides, M. Terrones, D.R.M. Walton, Chem. Mater. 8, 6 (1996)CrossRefGoogle Scholar
  13. 13.
    W. Teunissen, F.M.F. de Groot, J. Geus, O. Stephan, M. Tence, C. Colliex, Catal. J. 1, 169 (2001)CrossRefGoogle Scholar
  14. 14.
    F. Dumitrache, I. Morjan, R. Alexandrescu, I. Voicu, I. Sandu, M. Soare, C. Ploscaru, V. Fleaca, G. Ciupina, B. Prodan, B. Rand, R. Brydson, A. Woodword, Diam. Relat. Mater. 13, 362 (2004)CrossRefGoogle Scholar
  15. 15.
    B. David, N. Pizúrová, O. Schneeweiss, P. Bezdička, I. Morjan, R. Alexandrescu, J. Alloys Compd. 378, 112 (2004)CrossRefGoogle Scholar
  16. 16.
    F. Dumitrache, I. Morjan, R. Alexandrescu, V. Ciupina, G. Prodan, I. Voicu, C. Fleaca, L. Albu, M. Savoiu, I. Sandu, E. Popovici, I. Soare, Appl. Surf. Sci. 247, 25 (2005)CrossRefADSGoogle Scholar
  17. 17.
    J. Pola, Z. Bastl, V. Vorliéek, F. Dumitrache, R. Alexandrescu, I. Morjan, I. Sandu, V. Ciupina, Appl. Organomet. Chem. 18, 337 (2004)CrossRefGoogle Scholar
  18. 18.
    D. Babonneau, J. Briatico, F. Petroff, J. Appl. Phys. 87, 3432 (2000)CrossRefADSGoogle Scholar
  19. 19.
    T.J. Goodwin, S.H. Yoo, I. Matteazzi, J.R. Groza, Nanostruct. Mater. 8, 559 (1991)CrossRefGoogle Scholar
  20. 20.
    U. Narkiewicz, N. Guskos, W. Arabczyk, J. Typek, T. Bodziony, W. Konicki, G. Gazsiorek, I. Kucharewicz, E.A. Anagnostakis, Carbon 42, 1127 (1991)CrossRefGoogle Scholar
  21. 21.
    P.Z. Si, Z.D. Zhang, D.Y. Geng, C.Y. You, X.G. Zhao, W.S. Zhang, Carbon 41, 247 (2003)CrossRefGoogle Scholar
  22. 22.
    X.L. Dong, Z.D. Zhang, Y.C. Chuang, S.R. Jin, Phys. Rev. B 60, 3017 (1999)CrossRefADSGoogle Scholar
  23. 23.
    E. Carpene, P. Schaaf, Appl. Phys. Lett. 80, 891 (2002)CrossRefADSGoogle Scholar
  24. 24.
    J.A. Nelson, M. Wagner, Chem. Mater. 14, 4460 (2002)CrossRefGoogle Scholar
  25. 25.
    R.M. Cannon, S.C. Danforth, J.H. Flint, J.S. Haggerty, R.A. Marra, J. Am. Ceram. Soc. 65, 324 (1982)CrossRefGoogle Scholar
  26. 26.
    M. Ehbrecht, M. Faerber, F. Rohmund, V.V. Smirnov, O. Stelmakh, F. Huisken, Chem. Phys. Lett. 214, 34 (1993)CrossRefADSGoogle Scholar
  27. 27.
    R. Alexandrescu, I. Morjan, I. Voicu, D. Dumitrache, L. Albu, I. Soare, G. Prodan, Appl. Surf. Sci. 248, 138 (2005)CrossRefADSGoogle Scholar
  28. 28.
    F. Huisken, B. Kohn, R. Alexandrescu, I. Morjan, Eur. Phys. J. D 9, 141 (1999)CrossRefADSGoogle Scholar
  29. 29.
    H. Hofmeister, F. Huisken, B. Kohn, R. Alexandrescu, C. Cojocaru, A. Crunteanu, I. Morjan, L. Diamandescu, Appl. Phys. A 72, 7 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    X.B. Xiang, B. Ganguly, G.P. Huffman, F.E. Huggins, M. Endo, P.C. Eklund, Appl. Phys. A 8, 1966 (1993)Google Scholar
  31. 31.
    T. Žák, In: Mössbauer Spectroscopy in Materials, ed. by M. Miglierini, D. Petridis (Kluwer, Dordrecht, 1999) p. 385Google Scholar
  32. 32.
    R. Alexandrescu, Appl. Surf. Sci. 106, 28 (1996)CrossRefADSGoogle Scholar
  33. 33.
    K.E. Lewis, D.M. Golden, G.P. Smith, J. Am. Chem. Soc. 106, 3905 (1984)CrossRefGoogle Scholar
  34. 34.
    K.K. Pant, D. Kunzru, Can. J. Chem. Eng. 77, 150 (1999)CrossRefGoogle Scholar
  35. 35.
    R.B. Metz, Int. Rev. Phys. Chem. 23, 79 (2004)CrossRefGoogle Scholar
  36. 36.
    H. Suzuki, A. Inagaki, K. Matsubara, T. Takemori, Pure Appl. Chem. 73, 315 (2001)CrossRefGoogle Scholar
  37. 37.
    S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36, 255 (2003)CrossRefGoogle Scholar
  38. 38.
    A.T. Blades, E.W.R. Steacie, Can. J. Chem. 11, 1142 (1954)CrossRefGoogle Scholar
  39. 39.
    J. Ree, Y.H. Kim, H.K. Shin, J. Chem. Phys. 116, 4858 (2002)CrossRefADSGoogle Scholar
  40. 40.
    M. Ron, In: Applications of Mössbauer Spectroscopy, Vol. 2, ed. by R.L. Cohen (Academic Press, New York, 1980), p. 329Google Scholar
  41. 41.
    G. Le Cäer, J.M. Dubois, M. Pijolat, V. Perrichon, P. Bussiére, J. Phys. Chem. 86, 4799 (1982)CrossRefGoogle Scholar
  42. 42.
    S. Mørup, J.A. Dumesic, H. Topsøe, In: Applications of Mössbauer spectroscopy, Vol. 2, ed. by R. Cohen (Academic Press, New York, 1980), p. 1Google Scholar
  43. 43.
    U. Schwertmann, R.M. Cornell, The Iron Oxides (VCH, Weinheim, 1996)Google Scholar
  44. 44.
    Q.A. Pankhurst, R.J. Pollard, in Mössbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. I, ed. by R.J. Long, F. Grandjean (Plenum, New York, 1993), p. 77Google Scholar
  45. 45.
    H. Suzuki, A. Inagaki, K. Matsubara, T. Takemori, Pure. Appl. Chem. 73, 315 (2001)CrossRefGoogle Scholar
  46. 46.
    F. Dumitrache, I. Morjan, R. Alexandrescu, V. Ciupina, G. Prodan, I. Voicu, C. Fleaca, L. Albu, M. Savoiu, I. Sandu, E. Popovici, I. Soare, Appl. Surf. Sci. 247, 25 (2005)CrossRefADSGoogle Scholar
  47. 47.
    K.I. Zamaraev, Pure Appl. Chem. 69, 865 (1997)CrossRefGoogle Scholar
  48. 48.
    O.P. Krivoruchko, A.N. Shmakov, V.I. Zaikovskii, Nucl. Instrum. Methods Phys. Res. A 470, 198 (2001)CrossRefADSGoogle Scholar
  49. 49.
    J.A. Nuth, S.H. Moseley, R.F. Silverberg, J.H. Goebel, W.J. Moore, Astrophys. J. 290, L41 (1985)CrossRefADSGoogle Scholar
  50. 50.
    C. Christides, E. Devlin, A. Simopoulos, M.F. Meldine, D.J. Evans, R.L. Paul, J. Phys. Chem. 98, 11666 (1994)CrossRefGoogle Scholar
  51. 51.
    X. Li, C. Kutal, J. Alloys Compd. 349, 264 (2003)CrossRefGoogle Scholar
  52. 52.
    C. Jäger, J. Dorschner, H. Mutschke, T. Posch, T. Henning, Astron. Astrophys. 408, 193 (2003)CrossRefADSGoogle Scholar
  53. 53.
    P.K. Ajikumar, L.G. Wong, G. Subramanyam, R. Lakshminarayanan, S. Valiyaveettil, Cryst. Growth Design 5, 1129 (2005)CrossRefGoogle Scholar
  54. 54.
    F. Kemper, F.J. Molster, C. Jäger, L.B.F.M. Waters, Astron. Astrophys. 394, 679 (2002)CrossRefADSGoogle Scholar
  55. 55.
    J. Coates, In: Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2000)Google Scholar
  56. 56.
    N. Herlin, I. Bohn, C. Reynaud, M. Cauchetier, A. Galvez, J.-N. Rouzaud, Astron. Astrophys. 330, 1127 (1998)ADSGoogle Scholar
  57. 57.
    J.C. Rubim, M.H. Sousa, J.C.O. Silva, F.A. Tourinho, Brazil. J. Phys. 31, 402 (2001)ADSGoogle Scholar
  58. 58.
    O.N. Shebanova, P. Lazor, J. Raman Spectrosc. 34, 845 (2003)CrossRefGoogle Scholar
  59. 59.
    G. Mariotto, C. Vinegoni, L.G. Jacobsohn, F.L.J. Freire, Diam. Relat. Mater. 8, 668 (1999)CrossRefGoogle Scholar
  60. 60.
    J. Tang, M. Myers, K.A. Bosnick, L.E. Brus, J. Phys. Chem. B 107, 7501 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. Jäger
    • 1
    • 2
    • 3
  • H. Mutschke
    • 1
  • F. Huisken
    • 2
    • 3
  • R. Alexandrescu
    • 4
  • I. Morjan
    • 4
  • F. Dumitrache
    • 4
  • R. Barjega
    • 4
  • I. Soare
    • 4
  • B. David
    • 5
  • O. Schneeweiss
    • 5
  1. 1.Astrophysical Institute and University ObservatoryFriedrich Schiller University JenaJenaGermany
  2. 2.Institute of Solid State PhysicsFriedrich Schiller University JenaJenaGermany
  3. 3.MPI for AstronomyHeidelbergGermany
  4. 4.National Institute for Lasers, Plasma and Radiation PhysicsBucharestRomania
  5. 5.Institute of Physics of Materials, ASCRBrnoCzech Republic

Personalised recommendations