Applied Physics A

, Volume 85, Issue 1, pp 15–20 | Cite as

Tuning the microstructure of pulsed laser deposited polymer–metal nanocomposites

Rapid communication


Pulsed laser deposition was used to grow complex polymer–metal nanocomposites consisting of Ag, Cu and Nb clusters embedded in a poly(methyl-methacrylate) (PMMA) matrix. During deposition at room temperature, the size and amount of the metal clusters can be tuned in different ways. First, it is controlled by the number of laser pulses hitting the respective targets. In the case of Ag, a bimodal size distribution of the clusters is observed, induced by total coalescence and secondary nucleation processes. For Cu and Nb, much smaller clusters and higher cluster densities are obtained due to a stronger reactivity with the polymer and thus a lower diffusivity in the PMMA. Additionally, the microstructure of the Ag clusters is affected by the degree of cross linking of the polymer and can be influenced by pre-deposition of nucleation seeds in the form of small Cu clusters.


PMMA Pulse Laser Deposition Polymer Surface Metal Cluster Bimodal Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.A. Van Slyke, C.H. Chen, C.W. Tan, Appl. Phys. Lett. 69, 2160 (1996)CrossRefADSGoogle Scholar
  2. 2.
    A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986)CrossRefADSGoogle Scholar
  3. 3.
    K.L. Mittal (ed.), Metallized Plastics: Fundamentals and Applications (Marcel Dekker, New York, 1998)Google Scholar
  4. 4.
    M. Möller, H.P. Spatz, Curr. Opin. Colloid Interf. Sci. 2, 177 (1997)CrossRefGoogle Scholar
  5. 5.
    F. Burmeister, W. Badowsky, T. Braun, W. Wieprich, J. Boneberg, P. Leiderer, Appl. Surf. Sci. 144, 461 (1999)CrossRefADSGoogle Scholar
  6. 6.
    D.M. Kolb, R. Ullmann, T. Will, Science 275, 1097 (1997)CrossRefGoogle Scholar
  7. 7.
    M. Vollmer, A. Weber, Z. Phys. Chem. 119, 277 (1925)Google Scholar
  8. 8.
    A. Biswas, O.C. Aktas, U. Schürmann, U. Saeed, V. Zaporojtchenko, F. Faupel, T. Strunskus, Appl. Phys. Lett. 84, 2655 (2004)CrossRefADSGoogle Scholar
  9. 9.
    D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)Google Scholar
  10. 10.
    E. Süske, T. Scharf, H.-U. Krebs, J. Appl. Phys. 97, 063501 (2005)CrossRefADSGoogle Scholar
  11. 11.
    E. Süske, T. Scharf, T. Junkers, M. Buback, H.-U. Krebs, J. Appl. Phys. 100, 014906 (2006)CrossRefADSGoogle Scholar
  12. 12.
    H.-U. Krebs, J. Non-Equil. Process. 10, 3 (1997)Google Scholar
  13. 13.
    T. Hihara, Y. Yamada, M. Katoh, D.L. Peng, K. Sumiyama, J. Appl. Phys. 94, 7594 (2003)CrossRefADSGoogle Scholar
  14. 14.
    G. Jeffers, M.A. Dubson, P.M. Duxbury, J. Appl. Phys. 75, 5016 (1994)CrossRefADSGoogle Scholar
  15. 15.
    J. Carrey, J.-L. Maurice, Phys. Rev. B 65, 205401 (2002)CrossRefADSGoogle Scholar
  16. 16.
    R. Tannenbaum, C. Hakanson, A. Zeno, M. Tirrell, Langmuir 18, 5592 (2002)CrossRefGoogle Scholar
  17. 17.
    A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B.C. Curley, L.D. Lloyd, G.M. Tarbuck, R.L. Johnston, J. Chem. Phys. 122, 194308 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für MaterialphysikUniversity of GöttingenGöttingenGermany

Personalised recommendations