Applied Physics A

, Volume 84, Issue 4, pp 403–407

Synthesis of gold nanowires with controlled crystallographic characteristics

  • S. Karim
  • M.E. Toimil-Molares
  • F. Maurer
  • G. Miehe
  • W. Ensinger
  • J. Liu
  • T.W. Cornelius
  • R. Neumann


The controlled fabrication of poly- and single-crystalline Au nanowires is reported. In polycarbonate templates, prepared by heavy-ion irradiation and subsequent etching, Au nanowires with diameters down to 25 nm are electrochemically synthesized. Four-circle X-ray diffraction and transmission electron microscopy measurements demonstrate that wires deposited potentiostatically at a voltage of -1.2 V at 65 °C are single-crystalline and oriented along the [110] direction. By reverse-pulse electrodeposition, wires oriented along the [100] direction are grown. The wires are cylindrical over their whole length. The morphology of the caps growing on top of poly- and single-crystalline wires is a strong indication of the particular crystalline structure of the nanowires.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F.R. Aussenegg, Europhys. Lett. 60, 663 (2000)CrossRefADSGoogle Scholar
  2. 2.
    J. Weeber, A. Dereux, C. Girarad, J.R. Krenn, J. Goudonnet, Phys. Rev. B 60, 9061 (1999)CrossRefADSGoogle Scholar
  3. 3.
    W.L. Barnes, A. Dereux, T.W. Ebbesed, Nature 424, 824 (2003)CrossRefADSGoogle Scholar
  4. 4.
    R.M. Dickson, L.A. Lyon, J. Phys. Chem. B 104, 6095 (2000)CrossRefGoogle Scholar
  5. 5.
    M. El-Kouedi, C.D. Keating, in Nanobiotechnology, Concepts, Applications and Perspectives, ed. by C.M. Niemeyer, C.A. Mirkin (Wiley-VCH, 2004), pp. 429–443Google Scholar
  6. 6.
    D.H. Reich, M. Tanase, A. Hultgren, L.A. Bauer, C.S. Chen, G.J. Meyer, J. Appl. Phys. 93, 7275 (2003)CrossRefADSGoogle Scholar
  7. 7.
    M. Tian, J. Wang, J. Kurtz, T.E. Mallouk, M.H.W. Chan, Nano Lett. 3, 919 (2003)CrossRefGoogle Scholar
  8. 8.
    M. Wirtz, C.R. Martin, Adv. Mater. 15, 455 (2003)CrossRefGoogle Scholar
  9. 9.
    X.Y. Zhang, L.D. Zhang, Y. Lei, L.X. Zhao, Y.Q. Mao, J. Mater. Chem. 11, 1732 (2001)CrossRefGoogle Scholar
  10. 10.
    W.B. Zhao, J.J. Zhu, H.Y. Chen, J. Cryst. Growth 258, 176 (2003)CrossRefADSGoogle Scholar
  11. 11.
    J. Gu, J. Shi, L. Xiong, H. Chen, L. Li, M. Ruan, Solid State Sci. 6, 747 (2004)CrossRefGoogle Scholar
  12. 12.
    P. Forrer, F. Schlottig, H. Siegenthaler, M. Textor, J. Appl. Electrochem. 30, 533 (2000)CrossRefGoogle Scholar
  13. 13.
    H. Araki, A. Fukuoka, Y. Sakamoto, S. Inagaki, N. Sugimoto, Y. Fukushima, M. Ichikawa, J. Mol. Catal. A Chem. 199, 95 (2003)CrossRefGoogle Scholar
  14. 14.
    C.R. Martin, Science 266, 1961 (1993)CrossRefADSGoogle Scholar
  15. 15.
    M.E. Toimil-Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, J. Vetter, Adv. Mater. 13, 62 (2001)CrossRefGoogle Scholar
  16. 16.
    G. Yi, W. Scharzacher, Appl. Phys. Lett. 74, 1746 (2000)CrossRefADSGoogle Scholar
  17. 17.
    M.E. Toimil-Molares, N. Chtanko, T.W. Cornelius, D. Dobrev, I. Enculescu, R.H. Blick, R. Neumann, Nanotechnology 15, S201 (2004)CrossRefADSGoogle Scholar
  18. 18.
    N. Chtanko, M.E. Toimil-Molares, T.W. Cornelius, D. Dobrev, R. Neumann, J. Phys. Chem. B 108, 9950 (2004)CrossRefGoogle Scholar
  19. 19.
    T.W. Cornelius, J. Brötz, N. Chtanko, D. Dobrev, G. Miehe, R. Neumann, M.E. Toimil-Molares, Nanotechnology 16, S246 (2005)CrossRefADSGoogle Scholar
  20. 20.
    Z. Zhu, Y. Maekawa, H. Koshikawa, Y. Suzuki, N. Yonezawa, M. Yoshida, Nucl. Instrum. Methods Phys. Res. B217, 449 (2004)CrossRefADSGoogle Scholar
  21. 21.
    E. Ferain, R. Legras, Nucl. Instrum. Methods Phys. Res. B 174, 116 (2001)CrossRefADSGoogle Scholar
  22. 22.
    C. Schönenberger, B.M.I. van der Zande, L.G.J. Fokkink, M. Henny, C. Schmid, M. Krueger, A. Bachtold, A. Huber, H. Birk, U. Staufer, J. Phys. Chem. B 101, 5497 (1997)CrossRefGoogle Scholar
  23. 23.
    P.Y. Apel, I.V. Blonskaya, O.L. Orelovich, S.N. Akimenko, B. Sartowska, S.N. Dmitriev, Colloid J. 66, 725 (2004)CrossRefGoogle Scholar
  24. 24.
    STOE Peak File C85-1330.pksGoogle Scholar
  25. 25.
    J. Wang, M. Tian, T.E. Mallouk, M.H.W. Chan, J. Phys. Chem. B 108, 841 (2004)CrossRefGoogle Scholar
  26. 26.
    M.E. Toilmil-Molares, private communicationGoogle Scholar
  27. 27.
    M.E. Toimil-Molares, J. Brötz, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, C. Trautmann, J. Vetter, Nucl. Instrum. Methods Phys. Res. B 185, 192 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. Karim
    • 1
  • M.E. Toimil-Molares
    • 2
  • F. Maurer
    • 3
  • G. Miehe
    • 3
  • W. Ensinger
    • 3
  • J. Liu
    • 4
  • T.W. Cornelius
    • 2
  • R. Neumann
    • 2
  1. 1.Department of ChemistryPhilipps UniversityMarburgGermany
  2. 2.Gesellschaft für Schwerionenforschung (GSI)DarmstadtGermany
  3. 3.Institute of Materials ScienceDarmstadt University of TechnologyDarmstadtGermany
  4. 4.Institute of Modern PhysicsChinese Academy of Sciences (CAS)LanzhouP.R. China

Personalised recommendations