Applied Physics A

, Volume 84, Issue 3, pp 271–276 | Cite as

Chemical vapor deposition of multi-walled carbon nanotubes from nickel/yttria-stabilized zirconia catalysts

  • A.S. Ferlauto
  • D.Z. de Florio
  • F.C. Fonseca
  • V. Esposito
  • R. Muccillo
  • E. Traversa
  • L.O. Ladeira
Article

Abstract

Multi-walled carbon nanotubes (MWNT) were produced by chemical vapor deposition using yttria-stabilized zirconia/nickel (YSZ/Ni) catalysts. The catalysts were obtained by a liquid mixture technique that resulted in fine dispersed nanoparticles of NiO supported in the YSZ matrix. High quality MWNT having smooth walls, few defects, and low amounts of by-products such as amorphous carbon were obtained, even from catalysts with large Ni concentrations (>50 wt. %). By adjusting the experimental parameters, such as flux of the carbon precursor (ethylene) and Ni concentration, both the MWNT morphology and the process yield could be controlled. The resulting YSZ/Ni/MWNT composites can be interesting due to their mixed ionic-electronic transport properties, which could be useful in electrochemical applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Terrones, Ann. Rev. Mater. Res. 33, 419 (2003)CrossRefGoogle Scholar
  2. 2.
    Y. Ando, X. Zhao, T. Sugai, M. Kumar, Mater. Today 7, 22 (2004)CrossRefGoogle Scholar
  3. 3.
    H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 260, 471 (1996)CrossRefADSGoogle Scholar
  4. 4.
    M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Nature 388, 52 (1997)CrossRefADSGoogle Scholar
  5. 5.
    R. Sen, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 267, 276 (1997)CrossRefADSGoogle Scholar
  6. 6.
    P. Chen, H.B. Zhang, G.D. Lin, Q. Hong, K.R. Tsai, Carbon 35, 1495 (1997)CrossRefGoogle Scholar
  7. 7.
    J. Kong, A.M. Cassell, H. Dai, Chem. Phys. Lett. 292, 567 (1998)CrossRefADSGoogle Scholar
  8. 8.
    A. Cassell, J.A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 103, 6484 (1999)CrossRefGoogle Scholar
  9. 9.
    K. Mukhopadhyay, A. Koshio, T. Sugai, N. Tanaka, H. Shinohara, Z. Konya, J.B. Nagy, Chem. Phys. Lett. 303, 117 (1999)CrossRefADSGoogle Scholar
  10. 10.
    J.F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, Chem. Phys. Lett. 317, 83 (2000)CrossRefADSGoogle Scholar
  11. 11.
    A.-C. Dupuis, Prog. Mater. Sci. 50, 929 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Laurent, A. Peigney, O. Dumortier, A. Rousset, J. Eur. Ceram. Soc. 18, 2005 (1998)CrossRefGoogle Scholar
  13. 13.
    V. Esposito, C. D’Ottavi, S. Ferrari, S. Licoccia, E. Traversa, In Solid Oxide Fuel Cells VIII – Proceedings of the 8th International Symposium, ed. by S.C. Singhal, M. Dokiya (The Electrochemical Society Inc., New York, 2002), p. 643–654Google Scholar
  14. 14.
    V. Esposito, D.Z. de Florio, F.C. Fonseca, E.N.S. Muccillo, R. Muccillo, E. Traversa, J. Eur. Ceram. Soc. 25, 2637 (2005)CrossRefGoogle Scholar
  15. 15.
    N.M. Minh, Solid State Ionics 174, 271 (2004)CrossRefGoogle Scholar
  16. 16.
    B.C.H. Steele, J. Mater. Sci. 36, 1053 (2001)CrossRefGoogle Scholar
  17. 17.
    S. Kurasawa, S. Iwamoto, M. Inoue, Mol. Cryst. Liq. Cryst. 387, 347 (2002)Google Scholar
  18. 18.
    Y. Nagayasu, A. Nakayama, S. Kurasawa, S. Iwamoto, E. Yagasaki, M. Inoue, J. Jpn. Petrol. Inst. 48, 301 (2005)CrossRefGoogle Scholar
  19. 19.
    S.J. Han, T.K. Yu, J. Park, B. Koo, J. Joo, T. Hyeon, S. Hong, J. Im, J. Phys. Chem. B 108, 8091 (2004)CrossRefGoogle Scholar
  20. 20.
    T. Takeguchi, S. Furukawa, M. Inoue, J. Catal. 202, 14 (2001)CrossRefGoogle Scholar
  21. 21.
    D.W. Dees, T.D. Claar, T.E. Easler, D.C. Fee, F.C. Mrazek, J. Electrochem. Soc. 134, 2141 (1987)CrossRefGoogle Scholar
  22. 22.
    R. Andrews, D. Jacques, D. Qian, E.C. Dickey, Carbon 39, 1681 (2001)CrossRefGoogle Scholar
  23. 23.
    L.S.K. Pang, J.D. Saxby, S.P. Chatfield, J. Phys. Chem. 97, 6941 (1993)CrossRefGoogle Scholar
  24. 24.
    M. Perez-Cabero, I. Rodriguez-Ramos, A. Guerrero-Ruiz, J. Catal. 215, 305 (2003)CrossRefGoogle Scholar
  25. 25.
    Y. Murakami, S. Chiashi, Y. Miyauchi, S. Maruyama, Jpn. J. Appl. Phys. 43, 1221 (2004)CrossRefADSGoogle Scholar
  26. 26.
    S. Sun, N. Tsubaki, K. Fujimoto, Appl. Catal. A 202, 121 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A.S. Ferlauto
    • 1
  • D.Z. de Florio
    • 2
  • F.C. Fonseca
    • 3
  • V. Esposito
    • 4
  • R. Muccillo
    • 3
  • E. Traversa
    • 4
  • L.O. Ladeira
    • 1
  1. 1.Departamento de FísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Instituto de QuímicaUNESPAraraquaraBrazil
  3. 3.Instituto de Pesquisas Energéticas e NuclearesSão PauloBrazil
  4. 4.Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma “Tor Vergata”RomeItaly

Personalised recommendations