Applied Physics A

, Volume 84, Issue 1–2, pp 111–116 | Cite as

Comparison of the optical properties of as-grown ensembles and single ZnO nanowires

Article

Abstract

By use of micro-photoluminescence spectroscopy we analyze and compare the optical properties of individual zincoxide nanowires, with diameters 90 nm<d<620 nm, and of the as-grown ensemble. After special preparation techniques individual nanowires of different morphologies and crystalline qualities are observed which possess distinctively different near band-edge excitonic features. We show that the spectral shape of these excitonic emission lines correlates with the morphology of the nanowires. Our results clearly show that for decreasing wire diameter, distinct surface-related spectral features strongly contribute to the optical properties of individual ZnO nanowires. Finally, the temperature dependence of the near band-edge emission is analyzed. The results obtained from individual wires provide information about the homogeneity of the optical properties of the wires in the as-grown ensembles, and show that easily performed ensemble measurements indeed reflect the properties of typical individual, single nanowires.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Yang, H. Yan, S. Mao, R. Russo, J. Johnston, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, Adv. Funct. Mater. 12, 323 (2002)CrossRefGoogle Scholar
  2. 2.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  3. 3.
    C. Klingshirn, Semiconductor Optics, 2nd ed. (Springer, Berlin Heidelberg, 2005)Google Scholar
  4. 4.
    H. Priller, J. Brückner, Th. Gruber, C. Klingshirn, H. Kalt, A. Waag, H.J. Ko, T. Yao, Phys. Stat. Solidi B 241, 587 (2004)CrossRefGoogle Scholar
  5. 5.
    D.J. Sirbuly, M. Law, H. Yan, P. Yang, J. Phys. Chem. B 109, 15190 (2005)CrossRefGoogle Scholar
  6. 6.
    J.K. Song, J.M. Szarko, S.R. Leone, S. Li, Y. Zhao, J. Phys. Chem. B 109, 15749 (2005)CrossRefGoogle Scholar
  7. 7.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)PubMedGoogle Scholar
  8. 8.
    G.C. Yi, C. Wang, W.I. Park, Semicond. Sci. Technol. 20, S22 (2005)CrossRefGoogle Scholar
  9. 9.
    J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Nature Mater. 1, 106 (2002)CrossRefGoogle Scholar
  10. 10.
    C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, H. Kalt, Proc. Internat. School of Atomic and Molecular Spectroscopy, a NATO Advcanced Study Institute, 22nd Course: New Developments in Optics and related Fields, ed. by B. Di Bartolo, O. Forte, in press (2005)Google Scholar
  11. 11.
    L. Samuelson, Mater. Today 6, 22 (2003)CrossRefGoogle Scholar
  12. 12.
    T. Yatsui, T. Kawazoe, T. Shimizu, Y. Yamamoto, M. Ueda, M. Kourogi, M. Ohtsu, G.H. Lee, Appl. Phys. Lett. 80, 1444 (2002)CrossRefGoogle Scholar
  13. 13.
    Z.L. Wang, Mater. Today 7, 26 (2004)CrossRefGoogle Scholar
  14. 14.
    T. Nobis, E.M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, Phys. Rev. Lett. 93, 103903 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E.A. Zhukov, T. Yao, Appl. Phys. Lett. 81, 1231 (2002)CrossRefGoogle Scholar
  16. 16.
    H.J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, M. Zacharias, Nanotechnology 16, 913 (2005)CrossRefGoogle Scholar
  17. 17.
    Th. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, Appl. Phys. Lett. 84, 5359 (2004)CrossRefGoogle Scholar
  18. 18.
    B. Cheng, Y. Xiao, G. Wu, L. Zhang, Adv. Funct. Mater. 14, 913 (2004)CrossRefGoogle Scholar
  19. 19.
    R. Kling, C. Kirchner, Th. Gruber, F. Reuss, A. Waag, Nanotechnology 15, 1043 (2004)CrossRefGoogle Scholar
  20. 20.
    B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Stat. Solidi B 241, 231 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, H.O. Everitt, Phys. Rev. B 70 195207 (2004)Google Scholar
  22. 22.
    Y. Varshni, Physica 34, 149 (1967)CrossRefGoogle Scholar
  23. 23.
    C. Klingshirn, Phys. Stat. Solidi B 71, 547 (1975)Google Scholar
  24. 24.
    V.V. Travnikov, A. Freiberg, S.F. Savikhin, J. Luminesc. 47, 107 (1990)CrossRefGoogle Scholar
  25. 25.
    S. Savikhin, A. Freiberg, J. Luminesc. 55, 1 (1993)CrossRefGoogle Scholar
  26. 26.
    J. Grabowska, A. Meaney, K.K. Nanda, J.-P. Mosnier, M.O. Henry, J.-R. Duclère, E. McGlynn, Phys. Rev. B 71, 115439 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsUniversity of BremenBremenGermany
  2. 2.Institute of Physics and Physical TechnologiesClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations