Applied Physics A

, Volume 84, Issue 1–2, pp 21–25

Stacked chalcogenide layers used as multi-state storage medium for phase change memory

  • Y.F. Lai
  • J. Feng
  • B.W. Qiao
  • Y.F. Cai
  • Y.Y. Lin
  • T.A. Tang
  • B.C. Cai
  • B. Chen
Rapid communication

Abstract

The multi-state storage capability of phase-change memory (PCM) was confirmed by using stacked chalcogenide layers as storage medium. The stacked films were prepared by stacking a pure Ge2Sb2Te5 (GST) layer, a tungsten layer and a silicon-doped GST layer. The electrical properties of the stacked films were also investigated. The results show that there are two negative differential resistance areas in the current-voltage (I–V) curve and three steps with three relatively stable resistance values in the resistance-voltage (R–V) curve, which indicate that the multi-state storage of PCM can be realized by using this stacked film structure. Qualitative analysis reveals that the multi-state storage capability of this stacked film structure is due to the successive crystallizations in a silicon-doped GST layer and a pure GST layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Lai, T. Lowrey, IEDM. Tech. Dig. 803 (2001)Google Scholar
  2. 2.
    J. Maimon, E. Spall, R. Quinn, IEEE Aero. Conf. Proc. 5, 2289 (2001)Google Scholar
  3. 3.
    S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)CrossRefGoogle Scholar
  4. 4.
    B.W. Qiao, Y.F. Lai, J. Feng, J. Mater. Sci. Technol. 21, 95 (2005)Google Scholar
  5. 5.
    A. Pirovano, A. Lacaita, IEEE. Trans. Electron. Dev. 51, 714 (2004)CrossRefGoogle Scholar
  6. 6.
    L.P. Shi, T.C. Chong, P.K. Tan, Jpn. J. Appl. Phys. 38, 1645 (1999)CrossRefGoogle Scholar
  7. 7.
    T. Ohta, K. Nishiuchi, Jpn. J. Appl. Phys. 39, 770 (2000)CrossRefGoogle Scholar
  8. 8.
    Y.F. Lai, B.W. Qiao, J. Feng, J. Electron. Mater. 34, 176 (2005)Google Scholar
  9. 9.
    B.W. Qiao, J. Feng, Y.F. Lai, Appl. Surf. Sci. (in press)Google Scholar
  10. 10.
    J.H. Coombs, A.P.J.M. Jongenelis, W. Van Es-Spiekman, B.A.J. Jacobs, J. Appl. Phys. 78, 4918 (1995)CrossRefGoogle Scholar
  11. 11.
    D.H. Kang, D.H. Ahn, K.B. Kim, J.F. Webb, K.W. Yi, J. Appl. Phys. 94, 3536 (2003)CrossRefGoogle Scholar
  12. 12.
    C. Kittle, Introduction to Solid State Physics (Wiley, New York, 1956)Google Scholar
  13. 13.
    L.P. Shi, T.C. Chong, J.M. Li, D.S.C. Koh, R. Zhao, H.X. Yang, P.K. Tan, X.Q. Wei, W.D. Song, NVM Tech. Symp. 83 (2004)Google Scholar
  14. 14.
    D. Adler, M.S. Shur, M. Silver, S.R. Ovshinsky, J. Appl. Phys. 51, 3536 (1980)CrossRefGoogle Scholar
  15. 15.
    A.C. Warren, IEEE. Trans. Electron. Dev. 20, 123 (1973)Google Scholar
  16. 16.
    A.E. Owen, J.M. Robertson, IEEE. Trans. Electron. Dev. 20, 105 (1973)Google Scholar
  17. 17.
    A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, R. Bez, IEEE. Trans. Electron. Dev. 51, 452 (2004)CrossRefGoogle Scholar
  18. 18.
    H. Fritzsche, Amorphous and Liquid Semiconductors, ed. by J. Tauc (Plenum, London, 1974) p. 313Google Scholar
  19. 19.
    S.R. Ovshinsky, H. Fritzsche, IEEE. Trans. Electron. Dev. 20, 91 (1973)Google Scholar
  20. 20.
    A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, R. Bez, IEDM. Tech. Dig. 225 (2003)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Y.F. Lai
    • 1
  • J. Feng
    • 1
  • B.W. Qiao
    • 1
  • Y.F. Cai
    • 2
  • Y.Y. Lin
    • 2
  • T.A. Tang
    • 2
  • B.C. Cai
    • 1
  • B. Chen
    • 3
  1. 1.National Key Laboratory of Micro/Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of EducationShanghai Jiaotong UniversityShanghaiP.R. China
  2. 2.National Key Laboratory of ASIC & SystemFudan UniversityShanghaiP.R. China
  3. 3.Silicon Storage Technology, Inc.SunnyvaleUSA

Personalised recommendations