Advertisement

Applied Physics A

, Volume 83, Issue 4, pp 567–571 | Cite as

Conservation of acid waterlogged shipwrecks: nanotechnologies for de-acidification

  • R. Giorgi
  • D. Chelazzi
  • P. Baglioni
Article

Abstract

Preservation of waterlogged wooden artifacts, and in particular ancient wrecks, is a challenge in cultural heritage conservation. Samples, from the Swedish warship Vasa, are under investigation in order to develop innovative methods for wood de-acidification and preservation. The Vasa represents a unique case in the study of ancient wrecks. In the past four years the problem of the acidity of wood emerged as a strong threat to its conservation. The production of sulphuric acid inside the ship wood might be the cause of both chemical damage through the acid hydrolysis of cellulose, and of physical damage of the wood’s pore structure, due to the crystallization of sulphate minerals in the wood pores. In this paper we show that wood acidity can be neutralized by the application of nanoparticles of alkaline-earth carbonates and/or hydroxides. The treatment provides an alkaline reservoir inside the wood. Nanoparticles absorbed in the wood from an alcoholic dispersion adhere to the wood wall and release hydroxyl ions leading to the wood neutralization. Oak and pine samples from the Vasa wreck were characterized and treated with alkaline magnesium or calcium nanoparticle dispersions in non-aqueous solvents. De-acidification was monitored by pH changes and thermal analysis, and all the treated samples were submitted to thermal artificial ageing in order to demonstrate the efficacy of the method. The results obtained opened a new perspective in wood conservation.

Keywords

Wood Sample Calcium Hydroxide Pyrolysis Temperature Magnesium Hydroxide Transmission Electron Microscope Picture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Håfors, Conservation of the Swedish Warship Vasa from 1628 (Vasa Museum, Stockholm, Sweden, 2001)Google Scholar
  2. 2.
    J.A. Emery, H.A. Schroder, Wood Sci. Technol. 8, 123 (1974)CrossRefGoogle Scholar
  3. 3.
    C. Baird, Environmental Chemistry, 2nd edn. (Freeman, New York, 1999)Google Scholar
  4. 4.
    R.T. Lowson, Chem. Rev. 82, 461 (1982)CrossRefGoogle Scholar
  5. 5.
    M. Sandström, Y. Fors, I. Persson, Vasa Stud. 19, 1 (2003)Google Scholar
  6. 6.
    M. Sandström, F. Jalilehvand. I. Perrsom, U. Gelius, P. Frank, I. Hall-Roth, Nature 415, 893 (2002)CrossRefADSGoogle Scholar
  7. 7.
    K. Kilminster, Preserving our past. An investigation into archaeological wood from the shipwreck of the Batavia. BSc Thesis, University of Western Australia (2001)Google Scholar
  8. 8.
    D. Fengel, G. Wegener, Wood, Chemistry, Ultrastructure, Reactions (Walter de Gruyter, Berlin, 1989)Google Scholar
  9. 9.
    R. Giorgi, L. Dei, M. Ceccato, C.V. Schettino, P. Baglioni, Langmuir 18, 8198 (2002)CrossRefGoogle Scholar
  10. 10.
    R. Giorgi, L. Dei, C.V. Schettino, P. Baglioni, in Preprint IIC Congr. 2002, Baltimore, MD, p. 69Google Scholar
  11. 11.
    R. Giorgi, D. Chelazzi, P. Baglioni, Langmuir 21, 10743 (2005)CrossRefPubMedGoogle Scholar
  12. 12.
    R.D. Smith, Mass De-acidification at the Public Archives of Canada in Conservation of Library and Archive Materials and the Graphic Arts (Butterworth, London, 1987)Google Scholar
  13. 13.
    J. Malesic, J. Kolar, M. Strlic, D. Kocar, D. Fromageot, J. Lemaire, O. Haillant, Polym. Degrad. Stabil. 89, 64 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Ambrosi, P. Baglioni, L. Dei, R. Giorgi, C. Neto, Langmuir 17, 4251 (2001)CrossRefGoogle Scholar
  15. 15.
    B. Salvadori, L. Dei, Langmuir 17, 2371 (2001)CrossRefGoogle Scholar
  16. 16.
    V.A. Phillips, J.L. Kolbe, H. Opperhauser, J. Cryst. Growth 41, 228 (1977)CrossRefADSGoogle Scholar
  17. 17.
    M. Balaban, G. Ucar, Holz Roh- Werkst. 59, 67 (2001)CrossRefGoogle Scholar
  18. 18.
    M. Gindl, S. Tschegg, Langmuir 18, 3209 (2002)CrossRefGoogle Scholar
  19. 19.
    C. Henrist, J.-P. Mathieu, C. Vogels, A. Rulmont, R. Cloots, J. Cryst. Growth 249, 321 (2003)CrossRefADSGoogle Scholar
  20. 20.
    P. Hsu, L. Ronnquist, E. Matijevic, Langmuir 4, 31 (1988)CrossRefGoogle Scholar
  21. 21.
    T. Sugimoto, E. Matijevic, J. Colloid. Interf. Sci. 74, 227 (1980)CrossRefGoogle Scholar
  22. 22.
    K. Yura, K.C. Fredrikson, E. Matijevic, J. Colloid. Surf. A 50, 281 (1990)CrossRefGoogle Scholar
  23. 23.
    L.A. Perez-Maqueda, L. Wang, E. Matijevic, Langmuir 14, 4397 (1998)CrossRefGoogle Scholar
  24. 24.
    E. Matijevic, S. Cimas, Colloid. Polym. Sci. 265, 155 (1987)CrossRefGoogle Scholar
  25. 25.
    I. Sandu, M. Brebu, C. Luca, I.C.A. Sandu, C. Vasile, Polym. Degrad. Stabil. 80, 83 (2003)CrossRefGoogle Scholar
  26. 26.
    S. Vicini, E. Princi, G. Luciano, E. Fraceschi, E. Pedemonte, D. Oldak, H. Kaczmarek, A. Sionkowska, Thermochim. Acta 418, 123 (2004)CrossRefGoogle Scholar
  27. 27.
    S. Soares, G. Camino, S. Levchik, Polym. Degrad. Stabil. 49, 275 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Chemistry and CSGIUniversity of FlorenceFlorenceItaly

Personalised recommendations