Applied Physics A

, Volume 83, Issue 2, pp 225–228 | Cite as

Novel interface for cultural heritage at SOLEIL

Article

Abstract

The information that can be retrieved from the study of ancient materials and studies on their conservation rely strongly on the development and application of new techniques of physical analysis. This is particularly important at a time when global changes affecting our environment and way of life impose new stresses putting heritage preservation at risk. For this purpose, synchrotron techniques are particularly suited to the non- (or micro-) destructive characterisation of such heterogeneous materials, and a steep increase in the number of publications has been noticed recently from cultural heritage works using synchrotron radiation.

In 2004, an interface dedicated to archaeology and cultural heritage was launched at the SOLEIL synchrotron to allow researchers from the international scientific community to be granted specific expertise. This interface aims at easing the access of researchers to the synchrotron, facilitating contacts, providing technical support and informing the community. The very first applications of SOLEIL beamlines in the heritage field are illustrated through works recently carried out at the first beamline of SOLEIL, LUCIA, currently located at the Swiss Light Source (SLS). The setup of the beamline is succinctly described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Janssens, G. Vittiglio, I. Deraedt, A. Aerts, B. Vekemans, L. Vincze, F. Wei, I. de Ryck, O. Schalm, F. Adams, A. Rindby, A. Knochel, A. Simionovici, A. Snigirev, X-ray Spectrom. 29, 73 (2000)CrossRefGoogle Scholar
  2. 2.
    E. Pantos, C.C. Tang, E.J. MacLean, K.C. Cheung, R.W. Strange, P.J. Rizkallah, M.Z. Papiz, S.L. Colston, M.A. Roberts, B.M. Murphy, S.P. Collins, D.T. Clark, M.J. Tobin, M. Zhilin, K. Prag, A.J.N.W. Prag, Applications of synchrotron radiation to archaeological ceramics, In: Modern Trends in Scientific Studies on Ancient Ceramics, V. Kilikoglou, A. Hein, and Y. Maniatis (Eds.), Vol. 1011 (BAR Int. Series 2002) pp. 377–384Google Scholar
  3. 3.
    http://www.synchrotron-soleil.fr/heritage, http://srs.dl.ac.uk/arch/ and links thereinGoogle Scholar
  4. 4.
    D. Grolimund, M. Senn, M. Trottmann, M. Janousch, I. Bonhoure, A.M Scheidegger, M. Marcus, Spectrochim. Acta B 59, 1627 (2004)CrossRefADSGoogle Scholar
  5. 5.
    B. Newbury, B. Stephenson, J. Almer, M. Notis, G.S. Cargill, G.B. Stephenson, D. Haeffner, Powder Diffr. 19, 12 (2004)CrossRefADSGoogle Scholar
  6. 6.
    K. Leyssens, A. Adriaens, E. Pantos, C. Degrigny, Study of corrosion potential measurements as a means to monitor the storage and stabilization processes of archaeological copper artefacts In: Proc. of the Int. Conf. on Metals Conserv., Canberra, October 4–8, 2004, Vol. 332–343Google Scholar
  7. 7.
    P. Dillmann, F. Mazaudier, S. Hoerle, Corros. Sci. 46, 1401 (2004)CrossRefGoogle Scholar
  8. 8.
    P. Dillmann, R. Balasubramaniam, G. Beranger, Corros. Sci. 44, 2231 (2002)CrossRefGoogle Scholar
  9. 9.
    D. Neff, S. Reguer, L. Bellot-Gurlet, P. Dillmann, R. Bertholon, J. Raman Spectrosc. 35, 739 (2004)CrossRefADSGoogle Scholar
  10. 10.
    E. Pantos, W. Kockelmann, L.C. Chapon, L. Lutteroti, S.L. Bennet, M.J. Tobin, J.F.W. Mosselmans, T. Pradell, N. Salvadó, S. Butí, R. Garner, A.J.N. Prag, Nucl. Instrum. Methods B 239, 16 (2005)CrossRefADSGoogle Scholar
  11. 11.
    C.C. Tang, E.J. MacLean, M.A. Roberts, D.T. Clarke, E. Pantos, A.J.N. Prag, J. Archaeol. Sci. 28, 1015 (2001)CrossRefGoogle Scholar
  12. 12.
    W. Kockelmann, E. Pantos, A. Kirfel, Radiation in Art and Archaeometry (Elsevier, Amsterdam, 2000)Google Scholar
  13. 13.
    M. Matsunaga, I. Nakai, Archaeometry 46, 103 (2004)CrossRefGoogle Scholar
  14. 14.
    E. Gliozzo, I.W. Kirkman, E. Pantos, I. Memmi-Turbanti, Archaeometry 46, 227 (2004)CrossRefGoogle Scholar
  15. 15.
    D.Y. Fan, S.L. Feng, Q. Xu, Y. Lei, X.Q. Feng, L. Cheng, Y.Y. Huang, W. He, K.S. Quan, Y.M. Shen, High Energy Phys. Nucl. Phys. 27, 101 (2003)Google Scholar
  16. 16.
    L. Vendier, P. Sciau, É. Dooryhée, J. Phys. France IV 12, 189 (2002)CrossRefGoogle Scholar
  17. 17.
    T. Pradell, J. Molera, M. Vendrell, J. Pérez-Arantegui, E. Pantos, M. Roberts, M. DiMichiel, J. Am. Ceram. Soc. 87, 1018 (2004)CrossRefGoogle Scholar
  18. 18.
    S. Padovani, C. Sada, P. Mazzoldi, B. Brunetti, I. Borgia, A. Sgamellotti, A. Giulivi, F. D’Acapito, G. Battaglin, J. Appl. Phys. 93, 10058 (2003)CrossRefADSGoogle Scholar
  19. 19.
    A.D. Smith, T. Pradell, J. Molera, M. Vendrell, M.A. Marcus, E. Pantos, J. Phys. France IV 104, 519 (2003)CrossRefGoogle Scholar
  20. 20.
    M.O. Figueiredo, T.P. Silva, J.P. Veiga, A.M.D. Diogo, L. Trindade, Appl. Phys. A 79, 327 (2004)CrossRefADSGoogle Scholar
  21. 21.
    I. Deraedt, K. Janssens, J. Veeckman, L. Vincze, B. Vekemans, T.E. Jeffries, J. Anal. At. Spectrom. 16, 1012 (2001)CrossRefGoogle Scholar
  22. 22.
    Ž. Šmit, K. Janssens, O. Schalm, M. Kos, Nucl. Instrum. Methods B 213, 717 (2004)CrossRefADSGoogle Scholar
  23. 23.
    S. Quartieri, M. Triscari, G. Sabatino, F. Boscherini, A. Sani, Eur. J. Mineral. 14, 749 (2002)CrossRefGoogle Scholar
  24. 24.
    J.P. Veiga, M.O. Figueiredo, X-ray Spectrom. 31, 300 (2002)CrossRefGoogle Scholar
  25. 25.
    A. Simionovici, K. Janssens, A. Rindby, I. Snigireva, A. Snigirev, Precision micro-XANES of Mn in corroded Roman glasses. In: X-ray Microscopy: Proc. of the VIth, ed. by W. Meyer-Ilse, T. Warwick, D. Atwood, Int. Conf., Berkeley, CA (USA), 2–6 Aug 1999, Vol. 507 of AIP Conf., pp. 279–283, NY, USA, 2000. Amer. Inst. of Phys., MelvilleGoogle Scholar
  26. 26.
    N. Salvadó, T. Pradell, E. Pantos, M.Z. Papiz, J. Molera, M. Seco, M. Vendrell-Saz, J. Synchrotron Radiat. 9, 215 (2002)CrossRefPubMedGoogle Scholar
  27. 27.
    M. Sánchez del Río, P. Martinetto, A. Somogyi, C. Reyes-Valerio, É. Dooryhée, N. Peltier, L. Alianelli, B. Moignard, L. Pichon, T. Calligaro, J.-C. Dran, Spectrochim. Acta B 59, 1619 (2004)CrossRefADSGoogle Scholar
  28. 28.
    Ž. Šmit, K. Janssens, K. Proost, I. Langus, Nucl. Instrum. Methods B 219220, 35 (2004)Google Scholar
  29. 29.
    B. Kanngiesser, W. Malzer, I. Reiche, Nucl. Instrum. Methods B 211, 259 (2003)CrossRefADSGoogle Scholar
  30. 30.
    D.C. Creagh, V. Otieno-Alego, Nucl. Instrum. Methods B 213, 670 (2004)CrossRefADSGoogle Scholar
  31. 31.
    M.I. Cooper, P.S. Fowles, C.C. Tang, Appl. Surf. Sci. 201, 75 (2002)CrossRefADSGoogle Scholar
  32. 32.
    B. Kanngiesser, O. Hahn, M. Wilke, B. Nekat, W. Malzer, A. Erko, Spectrochim. Acta B 59, 1511 (2004)CrossRefADSGoogle Scholar
  33. 33.
    I. Reiche, M. Radtke, A. Berger, W. Görner, T. Ketelsen, S. Merchel, J. Riederer, H. Riesemeier, M. Roth, Spectrochim. Acta B 59, 1657 (2004)CrossRefADSGoogle Scholar
  34. 34.
    C.J. Kennedy, T.J. Wess, Restaurator 24, 61 (2003)CrossRefGoogle Scholar
  35. 35.
    T. Ungár, P. Martinetto, G. Ribárik, É. Dooryhée, P. Walter, M. Anne, J. Appl. Phys. 91, 2455 (2002)CrossRefADSGoogle Scholar
  36. 36.
    P. Martinetto, M. Anne, É. Dooryhée, P. Walter, Mater. Sci. Forum 321323, 1062 (2000)CrossRefGoogle Scholar
  37. 37.
    P. Walter, P. Martinetto, G. Tsoucaris, R. Bréniaux, M.A. Lefebvre, G. Richard, J. Talabot, É. Dooryhée, Nature 397, 483 (1999)CrossRefADSGoogle Scholar
  38. 38.
    M. Sandström, F. Jalilehvand, I. Persson, U. Gelius, P. Frank, I. Hall-Roth, Nature 415, 893 (2002)CrossRefADSGoogle Scholar
  39. 39.
    A. Kuczumow, S. Pikus, C. Un-Ro, P. Sadowski, P. Wajnberg, M. Jurek, Spectrochim. Acta B 56, 339 (2001)CrossRefADSGoogle Scholar
  40. 40.
    A. Kuczumow, P. Chevallier, P. Dillmann, P. Wajnberg, M. Rudas, Spectrochim. Acta B 55, 1623 (2000)CrossRefADSGoogle Scholar
  41. 41.
    J. Siurek, P. Chevallier, C.U. Ro, H.Y. Chun, H.S. Youn, E. Zieba, A. Kuczumow, J. Alloys Compd. 362, 107 (2004)CrossRefGoogle Scholar
  42. 42.
    I. Reiche, C. Vignaud, B. Champagnon, G. Panczer, C. Brouder, G. Morin, V.A. Solé, L. Charlet, M. Menu, Am. Mineral. 86, 1519 (2001)Google Scholar
  43. 43.
    T. Wess, I. Alberts, J. Hiller, M. Drakopoulos, A.T. Chamberlain, M. Collins, Calc. Tiss. Int. 70, 103 (2002)CrossRefGoogle Scholar
  44. 44.
    W.P. Adderley, I.L. Alberts, I.A. Simpson, T.J. Wess, J. Archaeol. Sci. 31, 1215 (2004)CrossRefGoogle Scholar
  45. 45.
    M.L. Carvalho, J.P. Marques, A.F. Marques, C. Casaca, X-ray Spectrom. 33, 55 (2004)CrossRefGoogle Scholar
  46. 46.
    S. Blau, B.J. Kennedy, J.Y. Kim, J. Archaeol. Sci. 29, 811 (2002)CrossRefGoogle Scholar
  47. 47.
    L. Bertrand, J. Doucet, P. Dumas, A. Simionovici, G. Tsoucaris, P. Walter, J. Synchrotron Radiat. 10, 387 (2003)CrossRefPubMedGoogle Scholar
  48. 48.
    M. Müller, B. Murphy, M. Burghammer, C. Riekel, M. Roberts, M. Papiz, D. Clarke, J. Gunneweg, E. Pantos, Spectrochim. Acta B 59, 1669 (2004)CrossRefADSGoogle Scholar
  49. 49.
    M. Cotte et al., this volume, 2005Google Scholar
  50. 50.
    N. Salvadó, S. Butí, M. J. Tobin, E. Pantos, J.N.W. Prag, T. Pradell, Anal. Chem. 77(11), 3444 (2005)Google Scholar
  51. 51.
    N. Salvadó, S. Butí, M. Tobin, E. Pantos, T. Pradell, The nature of medieval synthetic pigments: the capabilities of sr-infrared spectroscopy. In: IRUG 6 Proc.: 29th March - 1st April, Firenze 2004, pp. 296–301 (2004)Google Scholar
  52. 52.
    http://www.elettra.trieste.it/projects/roundtable/Google Scholar
  53. 53.
    http://gdr2762-cnrs.frGoogle Scholar
  54. 54.
    http://www.synchrotron-soleil.fr/heritageGoogle Scholar
  55. 55.
    http://srs.dl.ac.uk/arch/cost-g8/Google Scholar
  56. 56.
    http://www.synchrotron-soleil.fr/anglais/science-and-users/experiments/lucia/ and http://sls.web.psi.ch/view.php/beamlines/misox/Google Scholar
  57. 57.
    F. Farges et al. this volume, 2005Google Scholar
  58. 58.
    S. Reguer et al. this volume, 2005Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Archaeology and Heritage InterfaceSynchrotron SOLEILGif-sur-Yvette CedexFrance
  2. 2.Synchrotron SOLEIL, Saint-AubinLUCIA BeamlineGif-sur-Yvette CedexFrance
  3. 3.Archaeometry Unit, CCLRCDaresbury LaboratoryWarringtonUK

Personalised recommendations