Advertisement

Applied Physics A

, Volume 83, Issue 2, pp 235–238 | Cite as

Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

  • A.R. Woll
  • J. Mass
  • C. Bisulca
  • R. Huang
  • D.H. Bilderback
  • S. Gruner
  • N. Gao
Article

Abstract

A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10–80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings.

Keywords

Incident Beam Depth Resolution Instrumental Resolution Confocal Volume Compositional Depth Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Taft, J. Mayer, The Science of Paintings (Springer-Verlag, New York, 2000)Google Scholar
  2. 2.
    E. Ciliberto, G. Spoto, Modern Analytical Methods in Art and Archaeology (Wiley, New York, 2000)Google Scholar
  3. 3.
    M. Kumakhov, X-ray Spectrom. 29, 343 (2000)CrossRefGoogle Scholar
  4. 4.
    D. Bilerback, X-ray Spectrom. 32, 195 (2003)CrossRefGoogle Scholar
  5. 5.
    B. Kanngiesser, W. Malzer, I. Reiche, Nucl. Instrum. Methods B 211, 259 (2003)CrossRefADSGoogle Scholar
  6. 6.
    B. Kanngiesser, W. Malzer, A.F. Rodriguez, I. Reiche, Spectrochim. Acta B 60, 41 (2005)CrossRefADSGoogle Scholar
  7. 7.
    K. Janssens, K. Proost, G. Falkenberg, Spectrochim. Acta B 59, 1637 (2004)CrossRefADSGoogle Scholar
  8. 8.
    L. Vincze, B. Vekemans, F.E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, F. Adams, Anal. Chem. 76, 6786 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    N. Gao, K. Janssens, In: X-ray Spectrometry: Recent Technological Advances, K. Tsuji, J. Injuk, R. Van Grieken (Eds.) (Wiley, West Sussex, 2004)Google Scholar
  10. 10.
    G. Falkenburg, K. Rickers, D.H. Bilderback, R. Huang, HASYLAB Annual report, http://www-hasylab.desy.de/science/annual_reports/2003_report/part1/intern/11062.pdf, last accessed March 30, 2005Google Scholar
  11. 11.
    B. Vekemans, L. Vincze, F.E. Brenker, F. Ada, J. Anal. At. Spectrosc. 19, 1302 (2004)CrossRefGoogle Scholar
  12. 12.
    J. Bearden, Rev. Mod. Phys. 39, 78 (1967)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A.R. Woll
    • 1
  • J. Mass
    • 2
    • 3
  • C. Bisulca
    • 2
  • R. Huang
    • 1
  • D.H. Bilderback
    • 1
    • 4
  • S. Gruner
    • 1
    • 5
  • N. Gao
    • 6
  1. 1.Cornell High Energy Synchrotron SourceCornell UniversityIthacaUSA
  2. 2.University of DelawareNewarkUSA
  3. 3.Garden and LibraryWinterthur MuseumWinterthurUSA
  4. 4.School of Applied and Engineering PhysicsCornell UniversityIthacaUSA
  5. 5.Dept. of PhysicsCornell UniversityIthacaUSA
  6. 6.X-ray Optical SystemsAlbanyUSA

Personalised recommendations