Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens
- 1.6k Downloads
- 228 Citations
Abstract
Paleontologists are quite recent newcomers among the users of X-ray synchrotron imaging techniques at the European Synchrotron Radiation Facility (ESRF). Studies of the external morphological characteristics of a fossil organism are not sufficient to extract all the information for a paleontological study. Nowadays observations of internal structures become increasingly important, but these observations should be non-destructive in order to preserve the important specimens. Conventional microtomography allows performing part of these investigations. Nevertheless, the best microtomographic images are obtained using third-generation synchrotrons producing hard X-rays, such as the ESRF. Firstly, monochromatisation avoids beam hardening that is frequently strong for paleontological samples. Secondly, the high beam intensity available at synchrotron radiation sources allows rapid data acquisition at very high spatial resolutions, resulting in precise mapping of the internal structures of the sample. Thirdly, high coherence leads to additional imaging possibilities: phase contrast radiography, phase contrast microtomography and holotomography. These methods greatly improve the image contrast and therefore allow studying fossils that cannot be investigated by conventional microtomography due to a high degree of mineralisation or low absorption contrast. Thanks to these different properties and imaging techniques, a synchrotron radiation source and the ESRF in particular appears as an almost ideal investigation tool for paleontology.
Keywords
Phase Contrast Synchrotron Radiation Source High Beam Intensity Beamline ID19 Enamel ThicknessPreview
Unable to display preview. Download preview PDF.
References
- 1.A. Boyde, in Int. Symp. Tooth Enamel, p. 163 (1965)Google Scholar
- 2.A. Boyde, in Dental Enamel Ciba Foundation Symp. No. 205, p. 18 (1997)Google Scholar
- 3.M.C. Dean, J. Hum. Evol. 16, 157 (1987)CrossRefGoogle Scholar
- 4.G.C. Conroy, M.W. Vannier, Nature 329, 625 (1987)CrossRefADSGoogle Scholar
- 5.G.C. Conroy, Palaeont. Afr. 28, 53 (1991)Google Scholar
- 6.F.E. Grine, Palaeont. Afr. 28, 61 (1991)Google Scholar
- 7.M. Brunet, F. Guy, D. Pilbeam, H.T. Mackaye, A. Likius, D. Ahounta, A. Beauvilain, C. Blondel, H. Bocherens, H. Boisserie, J.-R. Boisserie, L. de Bonis, Y. Coppens, J. Dejax, C. Denys, P. Duringer, V. Eisenmann, G. Fanone, P. Fronty, D. Geraads, T. Lehmann, F. Lihoreau, A. Louchart, A. Mahamat, G. Merceron, G. Mouchelin, O. Otero, P. Pelaez Campomanes, M. Ponce de Leon, J.-C. Rage, M. Sapanet, M. Schuster, J. Sudre, P. Tassy, X. Valentin, P. Vignaud, L. Viriot, A. Zazzo, C. Zollikofer, Nature 418, 145 (2002)CrossRefADSGoogle Scholar
- 8.C.P.E. Zollikofer, M.S. Ponce De Leon, R.D. Martin, Evol. Anthropol. 6, 41 (1998)CrossRefGoogle Scholar
- 9.G.A. Macho, J.F. Thackeray, Am. J. Phys. Anthropol. 89, 133 (1992)CrossRefPubMedGoogle Scholar
- 10.G.T. Schwartz, J.F. Thackeray, C. Reid, J.F. Reenan, J. Hum. Evol. 35, 523 (1998)CrossRefPubMedGoogle Scholar
- 11.M. Rossi, F. Casali, D. Romani, L. Bondioli, R. Macchiarelli, L. Rook, Nucl. Instrum. Methods Phys. Res. B 213, 747 (2003)CrossRefADSGoogle Scholar
- 12.M.T. Silcox, J. Hum. Evol. 44, 73 (2003)CrossRefPubMedGoogle Scholar
- 13.R.A. Brooks, G. Di Chiro, Phys. Med. Biol. 21, 390 (1976)CrossRefPubMedGoogle Scholar
- 14.L. Salvo, P. Cloetens, E. Maire, S. Zabler, J.J. Blandin, J.Y. Buffière, W. Ludwig, E. Boller, D. Bellet, C. Josserond, Nucl. Instrum. Methods Phys. Res. B 200, 273 (2003)CrossRefADSGoogle Scholar
- 15.Y. Chaimanee, D. Jolly, M. Benammi, P. Tafforeau, D. Duzer, I. Moussa, J.-J. Jaeger, Nature 422, 61 (2003)CrossRefADSGoogle Scholar
- 16.P. Tafforeau, Ph.D. Thesis, Université de Montpellier II, 2004Google Scholar
- 17.M. Brunet, F. Guy, J.-R. Boisserie, A.D. Ibaye, T. Lehmann, F. Lihoreau, A. Louchart, M. Schuster, P. Tafforeau, A. Likius, H.T. Mackaye, C. Blondel, H. Bocherens, L. De Bonis, Y. Coppens, C. Denis, P. Duringer, V. Eisenmann, A. Flisch, D. Geraads, N. Lopez-Martinez, O. Otero, P.P. Campomanes, D. Pilbeam, M. Ponce de Leon, P. Vignaud, L. Viriot, C. Zollikofer, C.R. Palevol. 3, 275 (2004)CrossRefGoogle Scholar
- 18.M. Feist, J. Liu, P. Tafforeau, Am. J. Bot. 92, 1152 (2005)CrossRefGoogle Scholar
- 19.J.-J. Jaeger, Y. Chaimanee, P. Tafforeau, S. Ducrocq, A.N. Soe, L. Marivaux, J. Sudre, S.T. Tun, W. Htoon, B. Marandat, C.R. Palevol. 3, 241 (2004)CrossRefGoogle Scholar
- 20.R. Tabuce, M. Mahboubi, P. Tafforeau, J. Sudre, J. Hum. Evol. 47, 305 (2004)CrossRefPubMedGoogle Scholar
- 21.A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, Rev. Sci. Instrum. 66, 5486 (1995)CrossRefADSGoogle Scholar
- 22.S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Nature 384, 335 (1996)CrossRefADSGoogle Scholar
- 23.P. Cloetens, R. Barett, J. Baruchel, J.-P. Guigay, M. Schlenker, J. Phys. D 29, 133 (1996)CrossRefADSGoogle Scholar
- 24.J.Y. Buffière, E. Maire, P. Cloetens, G. Lormand, R. Fougères, Acta Mater. 47, 1613 (1999)CrossRefGoogle Scholar
- 25.P. Cloetens, J. Baruchel, D. Van Dyck, J. Van Landuyt, J.-P. Guigay, M. Schlenker, Appl. Phys. Lett. 75, 2912 (1999)CrossRefADSGoogle Scholar
- 26.J. Baruchel, P. Cloetens, J. Hartwig, W. Ludwig, L. Mancini, P. Pernot, M. Schlenker, J. Synchrotron Radiat. 7, 196 (2000)CrossRefGoogle Scholar
- 27.L. Mancini, E. Reinier, P. Cloetens, J. Gastaldi, J. Hartwig, M. Schlenker, J. Baruchel, Philos. Mag. A 78, 1175 (1998)CrossRefADSGoogle Scholar
- 28.P. Cloetens, W. Ludwig, J. Baruchel, J.-P. Guigay, P. Perno-Rejmankova, M. Salome-Pateyron, M. Schlenker, J.-Y. Buffiere, E. Maire, G. Peix, J. Appl. Phys. A32, 145 (1999)ADSGoogle Scholar
- 29.J. Baruchel, A. Lodini, S. Romanzetti, F. Rustichelli, A. Scrivani, Biomaterials 22, 1515 (2001)CrossRefPubMedGoogle Scholar
- 30.P. Cloetens, M. Pateyron-Salomé, J.Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, J. Appl. Phys. 81, 5878 (1997)CrossRefADSGoogle Scholar
- 31.C. Dean, F. Schrenk, J. Hum. Evol. 45, 381 (2003)CrossRefPubMedGoogle Scholar
- 32.R.F. Kay, Am. J. Phys. Anthropol. 55, 141 (1981)CrossRefGoogle Scholar
- 33.L.B. Martin, Nature 314, 260 (1985)CrossRefADSGoogle Scholar
- 34.R.P. Shellis, A.D. Beynon, D.J. Reid, K.M. Hiiemae, J. Hum. Evol. 35, 507 (1998)CrossRefPubMedGoogle Scholar
- 35.A.D. Beynon, B.A. Wood, Science 326, 493 (1987)Google Scholar
- 36.A. Boyde, M. Fortelius, K.S. Lester, L.B. Martin, Scan. Microsc. 2, 1479 (1988)Google Scholar
- 37.M.C. Dean, A.D. Beynon, J.F. Thackeray, G.A. Macho, Am. J. Phys. Anthropol. 91, 401 (1993)CrossRefPubMedGoogle Scholar
- 38.J. Moggi-Cecchi, Nature 414, 595 (2001)CrossRefADSGoogle Scholar
- 39.S. Risnes, J. Hum. Evol. 35, 331 (1998)CrossRefPubMedGoogle Scholar
- 40.G.T. Schwartz, K.E. Samonds, L.R. Godfrey, W.L. Jungers, E.L. Simons, Proc. Nat. Acad. Sci. USA 99, 6124 (2002)CrossRefPubMedADSGoogle Scholar
- 41.R.P. Shellis, J. Hum. Evol. 35, 387 (1998)CrossRefPubMedGoogle Scholar
- 42.M.C. Maas, M. O’Leary, J. Hum. Evol. 31, 293 (1996)CrossRefGoogle Scholar
- 43.M.C. Maas, E.R. Dumont, Evol. Anthropol. 8, 133 (1999)CrossRefGoogle Scholar
- 44.L.B. Martin, A.J. Olejniczak, M.C. Maas, J. Hum. Evol. 45, 351 (2003)CrossRefPubMedGoogle Scholar
- 45.W.V. Koenigswald, J.M. Rensberger, H.U. Pfretzschner, Nature 328, 150 (1987)CrossRefADSGoogle Scholar
- 46.S.R.P. Line, Arch. Oral Biol. 45, 363 (2000)CrossRefPubMedGoogle Scholar
- 47.S.E.P. Dowker, J.C. Elliott, R.M. Davis, R.M. Wilson, P. Cloetens, Caries Res. 38, 514 (2004)CrossRefPubMedGoogle Scholar
- 48.Y. Chaimanee, V. Suteethorn, J.-J. Jaeger, S. Ducrocq, Nature 385, 429 (1997)CrossRefADSGoogle Scholar
- 49.P. Cloetens, W. Ludwig, E. Boller, L. Helfen, L. Salvo, R. Mache, M. Schlenker, in Developments in X-ray Tomography III (Proc. SPIE 4503), ed. by U. Bonse (SPIE – The International Society for Optical Engineering, Bellingham, WA, 2002), pp. 82–91Google Scholar