Applied Physics A

, Volume 83, Issue 2, pp 195–202 | Cite as

Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens

  • P. TafforeauEmail author
  • R. Boistel
  • E. Boller
  • A. Bravin
  • M. Brunet
  • Y. Chaimanee
  • P. Cloetens
  • M. Feist
  • J. Hoszowska
  • J.-J. Jaeger
  • R.F. Kay
  • V. Lazzari
  • L. Marivaux
  • A. Nel
  • C. Nemoz
  • X. Thibault
  • P. Vignaud
  • S. Zabler


Paleontologists are quite recent newcomers among the users of X-ray synchrotron imaging techniques at the European Synchrotron Radiation Facility (ESRF). Studies of the external morphological characteristics of a fossil organism are not sufficient to extract all the information for a paleontological study. Nowadays observations of internal structures become increasingly important, but these observations should be non-destructive in order to preserve the important specimens. Conventional microtomography allows performing part of these investigations. Nevertheless, the best microtomographic images are obtained using third-generation synchrotrons producing hard X-rays, such as the ESRF. Firstly, monochromatisation avoids beam hardening that is frequently strong for paleontological samples. Secondly, the high beam intensity available at synchrotron radiation sources allows rapid data acquisition at very high spatial resolutions, resulting in precise mapping of the internal structures of the sample. Thirdly, high coherence leads to additional imaging possibilities: phase contrast radiography, phase contrast microtomography and holotomography. These methods greatly improve the image contrast and therefore allow studying fossils that cannot be investigated by conventional microtomography due to a high degree of mineralisation or low absorption contrast. Thanks to these different properties and imaging techniques, a synchrotron radiation source and the ESRF in particular appears as an almost ideal investigation tool for paleontology.


Phase Contrast Synchrotron Radiation Source High Beam Intensity Beamline ID19 Enamel Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Boyde, in Int. Symp. Tooth Enamel, p. 163 (1965)Google Scholar
  2. 2.
    A. Boyde, in Dental Enamel Ciba Foundation Symp. No. 205, p. 18 (1997)Google Scholar
  3. 3.
    M.C. Dean, J. Hum. Evol. 16, 157 (1987)CrossRefGoogle Scholar
  4. 4.
    G.C. Conroy, M.W. Vannier, Nature 329, 625 (1987)CrossRefADSGoogle Scholar
  5. 5.
    G.C. Conroy, Palaeont. Afr. 28, 53 (1991)Google Scholar
  6. 6.
    F.E. Grine, Palaeont. Afr. 28, 61 (1991)Google Scholar
  7. 7.
    M. Brunet, F. Guy, D. Pilbeam, H.T. Mackaye, A. Likius, D. Ahounta, A. Beauvilain, C. Blondel, H. Bocherens, H. Boisserie, J.-R. Boisserie, L. de Bonis, Y. Coppens, J. Dejax, C. Denys, P. Duringer, V. Eisenmann, G. Fanone, P. Fronty, D. Geraads, T. Lehmann, F. Lihoreau, A. Louchart, A. Mahamat, G. Merceron, G. Mouchelin, O. Otero, P. Pelaez Campomanes, M. Ponce de Leon, J.-C. Rage, M. Sapanet, M. Schuster, J. Sudre, P. Tassy, X. Valentin, P. Vignaud, L. Viriot, A. Zazzo, C. Zollikofer, Nature 418, 145 (2002)CrossRefADSGoogle Scholar
  8. 8.
    C.P.E. Zollikofer, M.S. Ponce De Leon, R.D. Martin, Evol. Anthropol. 6, 41 (1998)CrossRefGoogle Scholar
  9. 9.
    G.A. Macho, J.F. Thackeray, Am. J. Phys. Anthropol. 89, 133 (1992)CrossRefPubMedGoogle Scholar
  10. 10.
    G.T. Schwartz, J.F. Thackeray, C. Reid, J.F. Reenan, J. Hum. Evol. 35, 523 (1998)CrossRefPubMedGoogle Scholar
  11. 11.
    M. Rossi, F. Casali, D. Romani, L. Bondioli, R. Macchiarelli, L. Rook, Nucl. Instrum. Methods Phys. Res. B 213, 747 (2003)CrossRefADSGoogle Scholar
  12. 12.
    M.T. Silcox, J. Hum. Evol. 44, 73 (2003)CrossRefPubMedGoogle Scholar
  13. 13.
    R.A. Brooks, G. Di Chiro, Phys. Med. Biol. 21, 390 (1976)CrossRefPubMedGoogle Scholar
  14. 14.
    L. Salvo, P. Cloetens, E. Maire, S. Zabler, J.J. Blandin, J.Y. Buffière, W. Ludwig, E. Boller, D. Bellet, C. Josserond, Nucl. Instrum. Methods Phys. Res. B 200, 273 (2003)CrossRefADSGoogle Scholar
  15. 15.
    Y. Chaimanee, D. Jolly, M. Benammi, P. Tafforeau, D. Duzer, I. Moussa, J.-J. Jaeger, Nature 422, 61 (2003)CrossRefADSGoogle Scholar
  16. 16.
    P. Tafforeau, Ph.D. Thesis, Université de Montpellier II, 2004Google Scholar
  17. 17.
    M. Brunet, F. Guy, J.-R. Boisserie, A.D. Ibaye, T. Lehmann, F. Lihoreau, A. Louchart, M. Schuster, P. Tafforeau, A. Likius, H.T. Mackaye, C. Blondel, H. Bocherens, L. De Bonis, Y. Coppens, C. Denis, P. Duringer, V. Eisenmann, A. Flisch, D. Geraads, N. Lopez-Martinez, O. Otero, P.P. Campomanes, D. Pilbeam, M. Ponce de Leon, P. Vignaud, L. Viriot, C. Zollikofer, C.R. Palevol. 3, 275 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Feist, J. Liu, P. Tafforeau, Am. J. Bot. 92, 1152 (2005)CrossRefGoogle Scholar
  19. 19.
    J.-J. Jaeger, Y. Chaimanee, P. Tafforeau, S. Ducrocq, A.N. Soe, L. Marivaux, J. Sudre, S.T. Tun, W. Htoon, B. Marandat, C.R. Palevol. 3, 241 (2004)CrossRefGoogle Scholar
  20. 20.
    R. Tabuce, M. Mahboubi, P. Tafforeau, J. Sudre, J. Hum. Evol. 47, 305 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, Rev. Sci. Instrum. 66, 5486 (1995)CrossRefADSGoogle Scholar
  22. 22.
    S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Nature 384, 335 (1996)CrossRefADSGoogle Scholar
  23. 23.
    P. Cloetens, R. Barett, J. Baruchel, J.-P. Guigay, M. Schlenker, J. Phys. D 29, 133 (1996)CrossRefADSGoogle Scholar
  24. 24.
    J.Y. Buffière, E. Maire, P. Cloetens, G. Lormand, R. Fougères, Acta Mater. 47, 1613 (1999)CrossRefGoogle Scholar
  25. 25.
    P. Cloetens, J. Baruchel, D. Van Dyck, J. Van Landuyt, J.-P. Guigay, M. Schlenker, Appl. Phys. Lett. 75, 2912 (1999)CrossRefADSGoogle Scholar
  26. 26.
    J. Baruchel, P. Cloetens, J. Hartwig, W. Ludwig, L. Mancini, P. Pernot, M. Schlenker, J. Synchrotron Radiat. 7, 196 (2000)CrossRefGoogle Scholar
  27. 27.
    L. Mancini, E. Reinier, P. Cloetens, J. Gastaldi, J. Hartwig, M. Schlenker, J. Baruchel, Philos. Mag. A 78, 1175 (1998)CrossRefADSGoogle Scholar
  28. 28.
    P. Cloetens, W. Ludwig, J. Baruchel, J.-P. Guigay, P. Perno-Rejmankova, M. Salome-Pateyron, M. Schlenker, J.-Y. Buffiere, E. Maire, G. Peix, J. Appl. Phys. A32, 145 (1999)ADSGoogle Scholar
  29. 29.
    J. Baruchel, A. Lodini, S. Romanzetti, F. Rustichelli, A. Scrivani, Biomaterials 22, 1515 (2001)CrossRefPubMedGoogle Scholar
  30. 30.
    P. Cloetens, M. Pateyron-Salomé, J.Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, J. Appl. Phys. 81, 5878 (1997)CrossRefADSGoogle Scholar
  31. 31.
    C. Dean, F. Schrenk, J. Hum. Evol. 45, 381 (2003)CrossRefPubMedGoogle Scholar
  32. 32.
    R.F. Kay, Am. J. Phys. Anthropol. 55, 141 (1981)CrossRefGoogle Scholar
  33. 33.
    L.B. Martin, Nature 314, 260 (1985)CrossRefADSGoogle Scholar
  34. 34.
    R.P. Shellis, A.D. Beynon, D.J. Reid, K.M. Hiiemae, J. Hum. Evol. 35, 507 (1998)CrossRefPubMedGoogle Scholar
  35. 35.
    A.D. Beynon, B.A. Wood, Science 326, 493 (1987)Google Scholar
  36. 36.
    A. Boyde, M. Fortelius, K.S. Lester, L.B. Martin, Scan. Microsc. 2, 1479 (1988)Google Scholar
  37. 37.
    M.C. Dean, A.D. Beynon, J.F. Thackeray, G.A. Macho, Am. J. Phys. Anthropol. 91, 401 (1993)CrossRefPubMedGoogle Scholar
  38. 38.
    J. Moggi-Cecchi, Nature 414, 595 (2001)CrossRefADSGoogle Scholar
  39. 39.
    S. Risnes, J. Hum. Evol. 35, 331 (1998)CrossRefPubMedGoogle Scholar
  40. 40.
    G.T. Schwartz, K.E. Samonds, L.R. Godfrey, W.L. Jungers, E.L. Simons, Proc. Nat. Acad. Sci. USA 99, 6124 (2002)CrossRefPubMedADSGoogle Scholar
  41. 41.
    R.P. Shellis, J. Hum. Evol. 35, 387 (1998)CrossRefPubMedGoogle Scholar
  42. 42.
    M.C. Maas, M. O’Leary, J. Hum. Evol. 31, 293 (1996)CrossRefGoogle Scholar
  43. 43.
    M.C. Maas, E.R. Dumont, Evol. Anthropol. 8, 133 (1999)CrossRefGoogle Scholar
  44. 44.
    L.B. Martin, A.J. Olejniczak, M.C. Maas, J. Hum. Evol. 45, 351 (2003)CrossRefPubMedGoogle Scholar
  45. 45.
    W.V. Koenigswald, J.M. Rensberger, H.U. Pfretzschner, Nature 328, 150 (1987)CrossRefADSGoogle Scholar
  46. 46.
    S.R.P. Line, Arch. Oral Biol. 45, 363 (2000)CrossRefPubMedGoogle Scholar
  47. 47.
    S.E.P. Dowker, J.C. Elliott, R.M. Davis, R.M. Wilson, P. Cloetens, Caries Res. 38, 514 (2004)CrossRefPubMedGoogle Scholar
  48. 48.
    Y. Chaimanee, V. Suteethorn, J.-J. Jaeger, S. Ducrocq, Nature 385, 429 (1997)CrossRefADSGoogle Scholar
  49. 49.
    P. Cloetens, W. Ludwig, E. Boller, L. Helfen, L. Salvo, R. Mache, M. Schlenker, in Developments in X-ray Tomography III (Proc. SPIE 4503), ed. by U. Bonse (SPIE – The International Society for Optical Engineering, Bellingham, WA, 2002), pp. 82–91Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. Tafforeau
    • 1
    Email author
  • R. Boistel
    • 2
  • E. Boller
    • 1
  • A. Bravin
    • 1
  • M. Brunet
    • 3
  • Y. Chaimanee
    • 4
  • P. Cloetens
    • 1
  • M. Feist
    • 5
  • J. Hoszowska
    • 1
  • J.-J. Jaeger
    • 5
  • R.F. Kay
    • 6
  • V. Lazzari
    • 5
  • L. Marivaux
    • 5
  • A. Nel
    • 7
  • C. Nemoz
    • 1
  • X. Thibault
    • 1
  • P. Vignaud
    • 3
  • S. Zabler
    • 8
  1. 1.European Synchrotron Radiation FacilityGrenoble CedexFrance
  2. 2.Laboratoire de Neurobiologie de l’Apprentissage de la Mémoire et de la Communication, UMR CNRS 8620Université Paris SudOrsay CedexFrance
  3. 3.Laboratoire de Géobiologie Biochronologie et Paléontologie Humaine, UMR CNRS 6046Université de PoitiersPoitiers CedexFrance
  4. 4.Paleontology Section, Geological Survey DivisionDepartment of Mineral ResourcesBangkokThailand
  5. 5.Laboratoire de Paléontologie, Institut des Sciences de l’Evolution, UMR CNRS 5554, cc 064Université de Montpellier IIMontpellier Cedex 5France
  6. 6.Department of Biological, Anthropology and AnatomyDuke UniversityDurhamUSA
  7. 7.CNRS UMR 5143, EntomologieMuséum National d’Histoire NaturelleParisFrance
  8. 8.Department of Materials Science (SF3)Hahn Meitner InstituteBerlinGermany

Personalised recommendations