Applied Physics A

, 82:683

Spiral three-dimensional photonic crystals for telecommunications spectral range

Article

Abstract

Three-dimensional photonic crystals consisting of periodic arrays of spiral columns were fabricated in a commercially available photoresist (SU-8) by a direct laser writing technique. Tailoring the pre- and post-processing conditions for the photoresist has enabled the recording of extended, self-supporting periodic structures with sub-diffraction resolution. Pronounced photonic stop gaps were observed at wavelengths between 1.5 and 1.8 μm, close to the telecommunications region. These structures can be used as accurate and robust templates for subsequent infiltration by materials with higher refractive index.

References

  1. 1.
    Yablonovitch E (1987) Phys. Rev. Lett. 58:2059CrossRefPubMedADSGoogle Scholar
  2. 2.
    John S (1987) Phys. Rev. Lett. 58:2486CrossRefPubMedADSGoogle Scholar
  3. 3.
    Lin SY, Fleming JG, Hetherington DL, Smith BK, Biswas R, Ho KM, Sigalas MM, Zubrzycki W, Kurtz SR, Bur J (1998) Nature 394:251CrossRefADSGoogle Scholar
  4. 4.
    Noda S (2000) Physica 279:142CrossRefGoogle Scholar
  5. 5.
    Kawata S, Sun H-B, Tanaka T, Takada K (2001) Nature 412:697CrossRefPubMedADSGoogle Scholar
  6. 6.
    Tanaka T, Sun H-B, Kawata S (2002) Appl. Phys. Lett. 80:312CrossRefADSGoogle Scholar
  7. 7.
    Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Nature 405:437CrossRefPubMedADSGoogle Scholar
  8. 8.
    Serbin J, Ovsianikov A, Chichkov B (2004) Opt. Express 12:5221CrossRefADSGoogle Scholar
  9. 9.
    http://www3.interscience.wiley.com/cgi-bin/abstract/112101795/ABSTRACTGoogle Scholar
  10. 10.
    Deubel M, Freymann GV, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Nat. Mater. 3:444CrossRefPubMedADSGoogle Scholar
  11. 11.
    Maldovan M, Thomas EL (2004) Nat. Mater. 3:593CrossRefPubMedADSGoogle Scholar
  12. 12.
    Toader O, John S (2001) Science 292:1133CrossRefPubMedADSGoogle Scholar
  13. 13.
    Toader O, John S (2002) Phys. Rev. E 66:016610CrossRefADSGoogle Scholar
  14. 14.
    Kennedy SR, Brett MJ, Toader O, John S (2002) Nano Lett. 2:59CrossRefADSGoogle Scholar
  15. 15.
    Kennedy SR, Brett MJ, Miguez H, Toader O, John S (2003) Photon. Nanostruct. 1:37CrossRefADSGoogle Scholar
  16. 16.
    Seet KK, Mizeikis V, Matsuo S, Juodkazis S, Misawa H (2005) Adv. Mater. 17:541CrossRefGoogle Scholar
  17. 17.
    Chutinan A, Noda S (1998) Phys. Rev. B 57:4CrossRefGoogle Scholar
  18. 18.
    Mizeikis V, Seet KK, Juodkazis S, Misawa H (2004) Opt. Lett. 29:2061CrossRefPubMedADSGoogle Scholar
  19. 19.
    Marcinkevicius A, Mizeikis V, Juodkazis S, Matsuo S, Misawa H (2003) Appl. Phys. A 76:257CrossRefADSGoogle Scholar
  20. 20.
    Johnson SG, Joannopoulos JD (2001) Opt. Express 8:173ADSCrossRefGoogle Scholar
  21. 21.
    http://www.microchem.com/resources/materials.htmGoogle Scholar
  22. 22.
    Ashby MF, Gibson LJ, Wegst U, Olive R (1995) Proc. Roy. Soc. Lond. A 450:123ADSCrossRefGoogle Scholar
  23. 23.
    Eckert CA, Knutson BL, Debendetti PG (1996) Nature 383:313CrossRefADSGoogle Scholar
  24. 24.
    Namatsu H (2001) J. Vac. Sci. Technol. B 19:2709CrossRefGoogle Scholar
  25. 25.
    Straub M, Ventura MJ, Gu M (2003) Phys. Rev. Lett. 91:1824CrossRefGoogle Scholar
  26. 26.
    Zhou G, Ventura MJ, Vanner MR, Gu M (2005) Appl. Phys. Lett. 86:011108CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • K.K. Seet
    • 1
  • V. Mizeikis
    • 1
  • S. Juodkazis
    • 1
  • H. Misawa
    • 1
  1. 1.Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST-JST) and Research Institute for Electronic Science (RIES)Hokkaido UniversitySapporoJapan

Personalised recommendations