Applied Physics A

, Volume 82, Issue 3, pp 495–502 | Cite as

Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6

  • S. Haussühl
  • L. BohatýEmail author
  • P. Becker


Piezoelectric, pyroelectric, dielectric, elastic and thermoelastic properties of BiB3O6, point group symmetry 2, are reported. The eight independent components of the piezoelectric tensor could be derived from first-order longitudinal and transverse electrostrictive effects, employing a Michelson interferometer. For the determination of the elasticity tensor ultrasonic resonances of plane-parallel plates of different orientations and, in addition, the resonant ultrasound spectra (RUS) of rectangular parallelepipeda were measured. For the evaluation of the elasticity tensor from these resonant frequencies the piezoelectric coupling had to be taken into account. BiB3O6 exhibits a maximum longitudinal piezoelectric effect of 39.5×10-12 mV-1 along the twofold axis, a value about 17 timeslarger than that of α-quartz. The longitudinal elastic stiffness attains a minimum of about 5×1010 N m-2 along the same direction and a maximum perpendicular to the twofold axis of about 33×1010 N m-2, one of the largest elastic anisotropies observed in ionic crystals. This behaviour corresponds to the earlier observed extreme anisotropy of thermal expansion. The phenomena can be qualitatively interpreted by structural details, especially the preferential orientation of the lone electron pair of Bi3+.


Piezoelectric Effect Elasticity Tensor Twofold Axis Piezoelectric Coupling Transverse Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hellwig H, Liebertz J, Bohatý L (1999) Solid State Commun. 109:249CrossRefGoogle Scholar
  2. 2.
    Hellwig H, Liebertz J, Bohatý L (2000) J. Appl. Phys. 88:240CrossRefADSGoogle Scholar
  3. 3.
    Du C, Wang Z, Liu J, Xu X, Teng B, Fu K, Wang J, Liu Y, Shao Z (2001) Appl. Phys. B 73:215ADSGoogle Scholar
  4. 4.
    Wang Z, Teng B, Fu K, Xu X, Song R, Du C, Jiang H, Wang J, Liu Y, Shao Z (2002) Opt. Commun. 202:217CrossRefADSGoogle Scholar
  5. 5.
    Kityk IV, Majchrowski A (2004) Opt. Mater. 25:33CrossRefADSGoogle Scholar
  6. 6.
    Kaminskii AA, Becker P, Bohatý L, Ueda K, Takaichi K, Hanuza J, Maczka M, Eichler HJ, Gad GMA (2002) Opt. Commun. 206:179CrossRefADSGoogle Scholar
  7. 7.
    Becker P, Bohatý L (2001) Cryst. Res. Technol. 36:1175CrossRefGoogle Scholar
  8. 8.
    Kasprowicz D, Runka T, Szybowicz M, Ziobrowski P, Majchrowski A, Michalski E, Drozdowski M (2005) Cryst. Res. Technol. 40:259CrossRefGoogle Scholar
  9. 9.
    Stein W-D, Braden M, Becker P, Bohatý L (2004) Z. Kristallogr. Suppl. 21:82Google Scholar
  10. 10.
    Stein W-D, Cousson A, Becker P, Bohatý L, Braden M (2005) Z. Kristallogr. Suppl. 22:102Google Scholar
  11. 11.
    A. Gössling, T. Möller, W.-D. Stein, P. Becker, L. Bohatý, M. Grüninger (2005) Phys. Stat. Sol. (b) 242:R85Google Scholar
  12. 12.
    Becker P, Liebertz J, Bohatý L (1999) J. Cryst. Growth 203:149CrossRefADSGoogle Scholar
  13. 13.
    Fröhlich R, Bohatý L, Liebertz J (1984) Acta Cryst. C 40:343CrossRefGoogle Scholar
  14. 14.
    Bohatý L (1982) Z. Kristallogr. 158:233CrossRefGoogle Scholar
  15. 15.
    Haussühl S (1983) Kristallphysik. Physik-Verlag, Verlag Chemie, WeinheimGoogle Scholar
  16. 16.
    Becker P, Ahrweiler S, Held P, Schneeberger H, Bohatý L (2003) Cryst. Res. Technol. 38:881CrossRefGoogle Scholar
  17. 17.
    Byer RL, Roundy CB (1972) Ferroelectrics 3:333CrossRefGoogle Scholar
  18. 18.
    Andeen C, Fontanella J, Schuele D (1970) Rev. Sci. Instr. 41:1573CrossRefADSGoogle Scholar
  19. 19.
    Kyame JJ (1949) J. Acoust. Soc. Am. 21:159CrossRefADSGoogle Scholar
  20. 20.
    Hutson AR, White DL (1962) J. Appl. Phys. 33:40CrossRefADSGoogle Scholar
  21. 21.
    Leisure RG, Willis FA (1997) J. Phys. Condens. Matter 9:6001CrossRefADSGoogle Scholar
  22. 22.
    Haussühl S (2001) Plate Modes. In: Levy M, Bass HE, Stern RR (eds) Handbook of elastic properties of solids, liquids, and gases, vol I. Academic Press, San DiegoGoogle Scholar
  23. 23.
    Siegert H (1989) Z. Kristallogr. 186:274Google Scholar
  24. 24.
    H. Schneeberger, Pyroelektrische Eigenschaften nicht-ferroelektrischer Kristalle. (PhD-thesis, Ludwig-Maximilians-Universität, Munich 1992)Google Scholar
  25. 25.
    Haussühl S (1993) Z. Kristallogr. 205:215CrossRefGoogle Scholar
  26. 26.
    Bohatý L, Haussühl S, Liebertz J, Stähr S (1982) Z. Kristallogr. 161:157CrossRefGoogle Scholar
  27. 27.
    Smith-Verdier P, Garcia-Blanco S (1980) Z. Kristallogr. 151:175CrossRefGoogle Scholar
  28. 28.
    Corker DL, Glazer AM (1966) Acta Cryst. B 52:260Google Scholar
  29. 29.
    Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology. New Series Group III, vol 29a. D.F. Nelson (ed) (Springer-Verlag, Berlin, Heidelberg, New York 1992)Google Scholar
  30. 30.
    Inorganic crystal structure database ICSD for WWW, 2003–2004. (Fachinformationszentrum Karlsruhe 2004)Google Scholar
  31. 31.
    Gospodinov M, Haussühl S, Svestarov P, Tassev V, Petkov N (1988) Bulg. J. Phys. 15:140Google Scholar
  32. 32.
    PDF-2, Release 2003, International Centre for Diffraction Data ICDD (Newtown Square, PA, USA 2003)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of CrystallographyUniversity of CologneKölnGermany

Personalised recommendations