Advertisement

Applied Physics A

, Volume 82, Issue 2, pp 265–273 | Cite as

Tubuliform silk protein: A protein with unique molecular characteristics and mechanical properties in the spider silk fibroin family

  • M. Tian
  • R.V. Lewis
Article

Abstract

Orb–web weavers can produce up to six different types of silk and a glue for various functions. Tubuliform silk is unique among them due to its distinct amino acid composition, specific time of production, and atypical mechanical properties. To study the protein composing this silk, tubuliform gland cDNA libraries were constructed from three orb–weaving spiders Argiope aurantia, Araneus gemmoides, and Nephila clavipes. Amino acid composition comparison between the predicted tubuliform silk protein sequence (TuSp1) and the corresponding gland protein confirms that TuSp1 is the major component in tubuliform gland in three spiders. Sequence analysis suggests that TuSp1 shares no significant similarity with its paralogues, while it has conserved sequence motifs with the most primitive spider, Euagrus chisoseus silk protein. The presence of large side-chain amino acids in TuSp1 sequence is consistent with the frustrated β-sheet crystalline structure of tubuliform silk observed in transmission electron microscopy. Repeat unit comparison within species as well as among three spiders exhibits high sequence conservation. Parsimony analysis based on carboxy terminal sequence shows that Argiope and Araneus are more closely related than either is to Nephila which is consistent with phylogenetic analysis based on morphological evidence.

Keywords

Amino Acid Composition Repeat Unit Amino Acid Motif Silk Protein Spider Silk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

339_2005_3433_MOESM1_ESM.pdf (81 kb)
Supplementary Material 82KB

References

  1. 1.
    Schultz J (1987) Biol. Rev. 62:98CrossRefGoogle Scholar
  2. 2.
    Shear WA, Palmer JM, Coddington JA, Bonamo PM (1989) Science 246:479CrossRefADSGoogle Scholar
  3. 3.
    Xu M, Lewis RV (1990) Proc. Natl. Acad. Sci. USA 87:7120CrossRefADSGoogle Scholar
  4. 4.
    Hinman MB, Lewis RV (1992) J. Biol. Chem. 267:19320PubMedGoogle Scholar
  5. 5.
    Colgin MA, Lewis RV (1998) Pro. Sci. 7:667CrossRefGoogle Scholar
  6. 6.
    Hayashi CY, Lewis RV (1998) J. Mol. Biol. 275:773CrossRefPubMedGoogle Scholar
  7. 7.
    Hayashi CY, Lewis RV (2000) Science 287:1477CrossRefPubMedADSGoogle Scholar
  8. 8.
    Gatesy J, Hayashi CY, Motriuk D, Woods J, Lewis RV (2001) Science 291:2603CrossRefPubMedADSGoogle Scholar
  9. 9.
    Hayashi CY, Blackage TA, Lewis RV (2004) Mol. Biol. Evol. 21:1950CrossRefPubMedGoogle Scholar
  10. 10.
    Hayashi CY (2002) Molecular Systematics and Evolution: Theory and Practice. Birkhauser Verlag, SwitzerlandGoogle Scholar
  11. 11.
    Hayashi CY, Shipley NH, Lewis RV (1999) Int. J. Biol. Macromol. 24:271CrossRefPubMedGoogle Scholar
  12. 12.
    Moon MJ (2003) Korean J. Biol. Sci. 7:35MathSciNetGoogle Scholar
  13. 13.
    Stauffer SL, Coguill SL, Lewis RV (1994) J. Arachnol. 22:5Google Scholar
  14. 14.
    Guerette PA, Ginzinger DG, Weber BHF, Gosline JM (1996) Science 272:112CrossRefADSGoogle Scholar
  15. 15.
    Tian M-Z, Liu C-Z, Lewis RV (2004) Biomacromolecules 5:657CrossRefPubMedGoogle Scholar
  16. 16.
    Beckwitt R, Arcidiacono S, Stote R (1998) Insect Biochem. Molec. 28:121CrossRefGoogle Scholar
  17. 17.
    Hu X, Kohler K, Falick AM, Moore AMF, Jones PR, Sparkman OD, Vierra C (2005) J. Biol. Chem. 280:21220CrossRefPubMedGoogle Scholar
  18. 18.
    Parkhe AD, Seeley SK, Gardner K, Thompson L, Lewis RV (1997) J. Mol. Recognit. 10:1CrossRefPubMedGoogle Scholar
  19. 19.
    Barghout JYJ, Thiel BL, Viney C (1999) Int. J. Biol. Macromol. 24:211CrossRefPubMedGoogle Scholar
  20. 20.
    Manning RF, Gage LP (1980) J. Biol. Chem. 255:9451PubMedGoogle Scholar
  21. 21.
    Mita K, Ichimura S, James TC (1994) J. Mol. Evol. 38:583CrossRefPubMedGoogle Scholar
  22. 22.
    Selden P, Gall J (1990) Palaeontology 33:257Google Scholar
  23. 23.
    Coddington JA, Levi HW (1991) Ann. Rev. Ecol. System. 22:565CrossRefGoogle Scholar
  24. 24.
    Glatz L (1972) Z. Morphol. Tiere 72:1CrossRefGoogle Scholar
  25. 25.
    Platnick N, Coddington J, Forster R, Griswold C (1991) Am. Mus. Novit. 3016:1Google Scholar
  26. 26.
    Stevenson CW (1908) Biol. Bull. 15:105CrossRefGoogle Scholar
  27. 27.
    Palmer JM (1985) J. Morph. 186:195CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Molecular BiologyUniversity of WyomingLaramieUSA

Personalised recommendations