Applied Physics A

, Volume 82, Issue 2, pp 213–218 | Cite as

Variation in the material properties of spider dragline silk across species

  • B.O. SwansonEmail author
  • T.A. Blackledge
  • J. Beltrán
  • C.Y. Hayashi


Spiders produce high performance fibers that compare favorably with the best manmade fibers in strength and toughness. The amino acid sequences of silk proteins have been determined for a number of silk types and species, revealing extensive variation. This variation in sequence is hypothesized to confer different material properties. However, the material properties of silk have been characterized from only a few ecologically similar species, even though spiders are extremely diverse. Using a Nano Bionix® tensile tester, we measured mechanical properties of one type of silk, the dragline, from a broad sample of spider species. These taxa included orb-weavers and representatives of other lineages of true spiders that do not spin aerial capture webs. We found that all of the species sampled produce high-performance dragline fibers, suggesting that the remarkable properties of dragline silk predate the origin of the aerial orb-web. However, we report significant variation in all of the material properties measured. Furthermore, material properties tend not to be correlated, implying that different properties may have been selected upon in different spider lineages. We suggest that the spectrum of dragline silk sequences and material properties that have been produced over evolutionary time provides a rich resource for the design of biomimetic silk fibers.


Ultimate Stress Ultimate Strain Spider Silk Spider Species Black Widow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Denny M (1976) J. Exp. Biol. 65:483Google Scholar
  2. 2.
    Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) J. Exp. Biol. 202:3295PubMedGoogle Scholar
  3. 3.
    Gatesy J, Hayashi CY, Motriuk D, Woods J, Lewis RV (2001) Science 291:2603CrossRefPubMedADSGoogle Scholar
  4. 4.
    Brandwood A (1985) J. Exp. Biol. 116:141Google Scholar
  5. 5.
    Xu M, Lewis RV (1990) Proc. Nat. Acad. Sci. USA 87:7120PubMedCrossRefADSGoogle Scholar
  6. 6.
    Hinman MB, Lewis RV (1992) J. Biol. Chem. 267:19320PubMedGoogle Scholar
  7. 7.
    Guinea GV, Elices M, Real JI, Gutiérrez S, Pérez-Rigueiro J (2005) J. Exp. Zool. 303A:37CrossRefGoogle Scholar
  8. 8.
    Vollrath F, Holtet T, Thogersen HC, Frische S (1996) Proc. Roy. Soc. Lond. B 263:147CrossRefADSGoogle Scholar
  9. 9.
    Stauffer SL, Coguill SL, Lewis RV (1994) J. Arachnol. 22:5Google Scholar
  10. 10.
    Köhler T, Vollrath F (1995) J. Exp. Zool. 271:1CrossRefGoogle Scholar
  11. 11.
    Moore AMF, Tran K (1999) Int. J. Biol. Macromol. 24:277CrossRefPubMedGoogle Scholar
  12. 12.
    Pérez-Rigueiro J, Elices M, Viney C (2001) J. Appl. Polym. Sci. 82:2245CrossRefGoogle Scholar
  13. 13.
    Coddington JA, Giribet G, Harvey MS, Prendini L, Walter DE (2004) In: Assembling the tree of life, edited by Cracraft J, Donoghue MJ. Oxford University Press, New YorkGoogle Scholar
  14. 14.
    Eberhard WG (1990) Ann. Rev. Ecol. System. 21:341CrossRefGoogle Scholar
  15. 15.
    Craig CL (1987) Biol. J. Linn. Soc. 30:135CrossRefGoogle Scholar
  16. 16.
    Madsen B, Shao ZZ, Vollrath F (1999) Int. J. Biol. Macromol. 24:301CrossRefPubMedGoogle Scholar
  17. 17.
    Opell BD, Bond JE (2001) Evol. Ecol. Res. 3:567Google Scholar
  18. 18.
    Blackledge TA, Swindeman JE, Hayashi CY (2005) J. Exp. Biol. 208:1937CrossRefPubMedGoogle Scholar
  19. 19.
    Blackledge TA, Cardullo RA, Hayashi CY (2005) Invertebr. Biol. 124:165CrossRefGoogle Scholar
  20. 20.
    Garrido MA, Elices M, Viney C, Pérez-Rigueiro J (2002) Polymer 43:4495CrossRefGoogle Scholar
  21. 21.
    Tian MZ, Liu CZ, Lewis RV (2004) Biomacromolecules 5:675CrossRefPubMedGoogle Scholar
  22. 22.
    Hayashi CY, Shipley NH, Lewis RV (1999) Int. J. Biol. Macromol. 24:271CrossRefPubMedGoogle Scholar
  23. 23.
    Fedič R, Žurovec M, Sehnal F (2003) J. Biol. Chem. 278:35255CrossRefPubMedGoogle Scholar
  24. 24.
    Termonia Y (1994) Macromolecules 27:7378CrossRefADSGoogle Scholar
  25. 25.
    Lin LH, Edmonds DT, Vollrath F (1995) Nature 373:146CrossRefADSGoogle Scholar
  26. 26.
    Osaki S (1999) Int. J. Biol. Macromol. 24:283CrossRefPubMedGoogle Scholar
  27. 27.
    Work RW (1978) Trans. Am. Microsc. Soc. 97:180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • B.O. Swanson
    • 1
    • 4
    Email author
  • T.A. Blackledge
    • 2
  • J. Beltrán
    • 3
  • C.Y. Hayashi
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of BiologyUniversity of AkronAkronUSA
  3. 3.Department of BiologyUniversity of CaliforniaIrvineUSA
  4. 4.Biology DepartmentPacific UniversityForest GroveUSA

Personalised recommendations