Applied Physics A

, Volume 82, Issue 4, pp 633–638 | Cite as

Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes

  • M. HahnEmail author
  • O. Barbieri
  • F.P. Campana
  • R. Kötz
  • R. Gallay


The extraordinary stability and cycle life performance of today’s electrochemical double-layer capacitors (EDLCs) are generally ascribed to the fact that charge storage in activated carbon (AC) is based on pure double-layer charging. In contrast, Faradaic charge-transfer reactions like those occurring in batteries are often connected with dimensional changes, which can affect the cycle life of these storage devices. Here we report the charge-induced height change of an AC electrode in an aprotic electrolyte solution, 1 mol/l (C2H5)4NBF4 (TEABF4) in acetonitrile. The results are compared with those obtained for a graphite electrode in the same electrolyte. For both electrodes, we observe an expansion/contraction of several percent for a potential window of ±2 V vs. the immersion potential (ip). For the EDLC electrode, significant expansion starts at about 1 V remote from the ip and hence is well within the normal EDLC operation range. For the graphite electrode, the height changes are unambiguously caused by intercalation/deintercalation of both anions and cations. The close analogies between the graphite and the EDLC electrode suggest that ion intercalation or insertion processes might play a major role for charge storage, self discharge, cyclability, and the voltage limitation of EDLCs.


Graphite Electrode Dimensional Change EPDM Height Change Double Layer Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dresselhaus MS, Dresselhaus G (2002) Adv. Phys. 51:1CrossRefADSGoogle Scholar
  2. 2.
    Dahn JR, Fong R, Spoon MJ (1990) Phys. Rev. B 42:6424CrossRefADSGoogle Scholar
  3. 3.
    Pietronero L, Strässler S (1981) Phys. Rev. Lett. 47:593CrossRefADSGoogle Scholar
  4. 4.
    Kertesz M (1985) Mol. Cryst. Liq. Cryst. 126:103CrossRefGoogle Scholar
  5. 5.
    Chan CT, Kamitakahara WA, Ho KM (1987) Phys. Rev. Lett. 58:1528PubMedCrossRefADSGoogle Scholar
  6. 6.
    Nixon DE, Parry GS (1969) J. Phys. C: Solid State Phys. 2:1732CrossRefADSGoogle Scholar
  7. 7.
    Kamitakahara WA, Zarestky JL, Eklund PC (1985) Synth. Met. 12:301CrossRefGoogle Scholar
  8. 8.
    Fischer JE, Kim HJ, Cajipe VB (1987) Phys. Rev. B 36:4449CrossRefADSGoogle Scholar
  9. 9.
    Oren Y, Glatt I, Livnat A, Kafri O, Soffer A (1985) J. Electroanal. Chem. 187:59CrossRefGoogle Scholar
  10. 10.
    Oren Y, Soffer A (1986) J. Electroanal. Chem. 206:101CrossRefGoogle Scholar
  11. 11.
    Golub D, Oren Y, Soffer A (1987) Carbon 25:109CrossRefGoogle Scholar
  12. 12.
    Biberacher W, Lerf A, Besenhard JO, Möhwald H, Butz T (1982) Mater. Res. Bull. 17:1385CrossRefGoogle Scholar
  13. 13.
    Besenhard JO, Winter M, Yang J, Biberacher W (1995) J. Power Source 54:228CrossRefGoogle Scholar
  14. 14.
    Winter M, Wrodnigg GH, Besenhard JO, Biberacher W, Novak P (2000) J. Electrochem. Soc. 147:2427CrossRefGoogle Scholar
  15. 15.
    Ohzuku T, Matoba N, Sawai K (2001) J. Power Source 97–98:73CrossRefGoogle Scholar
  16. 16.
    DFT User’s Guide v1.03, Micromeritics Instrument Corporation (1993)Google Scholar
  17. 17.
    Kastening B, Hahn M, Rabanus B, Heins M, Zum Felde U (1997) Electrochim. Acta 42:2789CrossRefGoogle Scholar
  18. 18.
    Hahn M, Baertschi M, Barbieri O, Sauter J-C, Kötz R, Gallay R (2004) Electrochem. Solid-State Lett. A33:7Google Scholar
  19. 19.
    Besenhard JO, Fritz HP (1974) J. Electroanal. Chem. 53:329CrossRefGoogle Scholar
  20. 20.
    Besenhard JO (1976) Carbon 14:111CrossRefGoogle Scholar
  21. 21.
    Santhanam R, Noel M (1997) J. Power Source 66:47CrossRefGoogle Scholar
  22. 22.
    Dano C, Simonet J (2004) J. Electroanal. Chem. 564:115CrossRefGoogle Scholar
  23. 23.
    F.P. Campana, Thesis, University of Bern (2005)Google Scholar
  24. 24.
    Stevens DA, Dahn JR (2001) J. Electrochem. Soc. 148:A803CrossRefGoogle Scholar
  25. 25.
    H. Nakamura M Okamura, in 13th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL (Florida Educational Seminars, Boca Raton, FL, 2003), p. 215Google Scholar
  26. 26.
    Takeuchi M, Koike K, Maruyama T, Mogami A, Okamura M (1998) Electrochemistry 66:1311Google Scholar
  27. 27.
    Takeuchi M, Maruyama T, Koike K, Mogami A, Oyama T, Kobayashi H (2001) Electrochemistry 69:487Google Scholar
  28. 28.
    M. Ue, in 8th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, FL (Florida Educational Seminars, Boca Raton, FL, 1998)Google Scholar
  29. 29.
    Gerischer H (1985) J. Phys. Chem. 89:4249CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Hahn
    • 1
    Email author
  • O. Barbieri
    • 1
  • F.P. Campana
    • 1
  • R. Kötz
    • 1
  • R. Gallay
    • 2
  1. 1.Electrochemistry LaboratoryPaul Scherrer InstituteVilligen PSISwitzerland
  2. 2.Maxwell Technologies SARossensSwitzerland

Personalised recommendations