Applied Physics A

, Volume 82, Issue 4, pp 599–606 | Cite as

Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors

  • T. Cottineau
  • M. Toupin
  • T. Delahaye
  • T. Brousse
  • D. Bélanger


In this paper, we wish to present an overview of the research carried out in our laboratories with low-cost transition metal oxides (manganese dioxide, iron oxide and vanadium oxide) as active electrode materials for aqueous electrochemical supercapacitors. More specifically, the paper focuses on the approaches that have been used to increase the capacitance of the metal oxides and the cell voltage of the supercapacitor. It is shown that the cell voltage of an electrochemical supercapacitor can be increased significantly with the use of hybrid systems. The most relevant associations are Fe3O4 or activated carbon as the negative electrode and MnO2 as the positive. The cell voltage of the Fe3O4/MnO2 device is 1.8 V and this value was increased to 2.2 V by using activated carbon instead of Fe3O4. These two systems have shown superior behavior compared to a symmetric MnO2/MnO2 device which only works within a 1 V potential window in aqueous K2SO4. Furthermore, the activated carbon/MnO2 hybrid device exhibits a real power density of 605 W/kg (maximum power density =19.0 kW/kg) with an energy density of 17.3 Wh/kg. These values compete well with those of standard electrochemical double layer capacitors working in organic electrolytes.


Cell Voltage Composite Electrode Manganese Dioxide Vanadium Oxide Oxygen Evolution Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conway BE (1999) Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications. Kluwer, Plenum, New YorkGoogle Scholar
  2. 2.
    Taberna PL, Simon P, Fauvarque JF (2003) J Electrochem Soc 150:A292CrossRefGoogle Scholar
  3. 3.
    Toupin M, Bélanger D, Hill IR, Quinn D (2005) J Power Sources 140:203CrossRefGoogle Scholar
  4. 4.
    Lust E, Janes A, Arulepp M (2004) J Electroanal Chem 562:33CrossRefGoogle Scholar
  5. 5.
    Vix-Guterl C, Saadallah S, Jurewicz K, Frackowiak E, Redam M, Parmentier J, Patarin J, Béguin F (2004) Mater Sci Eng B 108:148CrossRefGoogle Scholar
  6. 6.
    Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris JP (1994) J Power Sources 47:89CrossRefGoogle Scholar
  7. 7.
    Fusalba F, El Mehdi N, Breau L, Bélanger D (1999) Chem Mater 11:2743CrossRefGoogle Scholar
  8. 8.
    Naudin E, Ho HA, Branchaud S, Breau L, Bélanger D (2002) J Phys Chem B 106:10585CrossRefGoogle Scholar
  9. 9.
    Kim H, Popov BN (2002) J Power Sources 104:52CrossRefGoogle Scholar
  10. 10.
    Chang K-H, Hu C-C (2004) J Electrochem Soc 151:A958CrossRefGoogle Scholar
  11. 11.
    Soudan P, Gaudet J, Guay D, Bélanger D, Schulz R (2002) Chem Mater 14:1210CrossRefGoogle Scholar
  12. 12.
    Lee HY, Goodenough JB (1999) J Solid State Chem 144:220CrossRefADSGoogle Scholar
  13. 13.
    Lee HY, Manivannan V, Goodenough JB (1999) C R Acad Sci Paris 2(serie II c):565Google Scholar
  14. 14.
    Wu MS, Chiang PCJ (2004) Electrochem Solid-State Lett 7:A122CrossRefGoogle Scholar
  15. 15.
    Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444CrossRefGoogle Scholar
  16. 16.
    Lee HY, Kim SW, Lee HY (2001) Electrochem Solid-State Lett 4:A19CrossRefGoogle Scholar
  17. 17.
    Hu CC, Tsou TW (2002) Electrochem Commun 4:105CrossRefGoogle Scholar
  18. 18.
    Chin SF, Pang SC, Anderson MA (2002) J Electrochem Soc 149:A379CrossRefGoogle Scholar
  19. 19.
    Jiang J, Kucernak A (2002) Electrochim Acta 47:2381CrossRefGoogle Scholar
  20. 20.
    Hu CC, Tsou TW (2002) Electrochim Acta 47:3523CrossRefGoogle Scholar
  21. 21.
    Jeong YU, Manthiram A (2002) J Electrochem Soc 149:A1419CrossRefGoogle Scholar
  22. 22.
    Broughton JN, Brett MJ (2002) Electrochem Solid-State Lett 5:A279CrossRefGoogle Scholar
  23. 23.
    Hong MS, Lee SH, Kim SW (2002) Electrochem Solid-State Lett 5:A227CrossRefGoogle Scholar
  24. 24.
    Toupin M, Brousse T, Bélanger D (2002) Chem Mater 14:3946CrossRefGoogle Scholar
  25. 25.
    Kim H, Popov BN (2003) J Electrochem Soc 150:D56CrossRefGoogle Scholar
  26. 26.
    Hu CC, Wang C-C (2003) J Electrochem Soc 150:A1079CrossRefGoogle Scholar
  27. 27.
    Chang JK, Tsai WT (2003) J Electrochem Soc 150:A1333CrossRefGoogle Scholar
  28. 28.
    Reddy RN, Reddy RG (2003) J Power Sources 124:330CrossRefGoogle Scholar
  29. 29.
    Brousse T, Bélanger D (2003) Electrochem Solid-State Lett 6:A244CrossRefGoogle Scholar
  30. 30.
    Brousse T, Toupin M, Bélanger D (2004) J Electrochem Soc 151:A614CrossRefGoogle Scholar
  31. 31.
    Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184CrossRefGoogle Scholar
  32. 32.
    Jones D, Wortham E, Rozière J, Favier F, Pascal JL, Monconduit L (2004) J Phys Chem Solids 65:235CrossRefADSGoogle Scholar
  33. 33.
    Chen YS, Hu CC, Wu YT (2004) J Solid-State Electrochem 8:467CrossRefGoogle Scholar
  34. 34.
    Zhou YK, He BL, Zhang FB, Li HL (2004) J Solid-State Electrochem 8:482CrossRefGoogle Scholar
  35. 35.
    Reddy RN, Reddy RG (2004) J Power Sources 132:315CrossRefGoogle Scholar
  36. 36.
    Chang JK, Chen YL, Tsai WT (2004) J Power Sources 135:344CrossRefGoogle Scholar
  37. 37.
    Chang JK, Lin CT, Tsai WT (2004) Electrochemistry Commun 6:666CrossRefGoogle Scholar
  38. 38.
    Wu M, Snook GA, Chen GZ, Fray DJ (2004) Electrochemistry Commun 6:499CrossRefGoogle Scholar
  39. 39.
    Broughton JN, Brett MJ (2004) Electrochim Acta 49:4439CrossRefGoogle Scholar
  40. 40.
    Raymundo-Pinero E, Khomenko V, Frackowiak E, Béguin F (2005) J Electrochem Soc 152:A229CrossRefGoogle Scholar
  41. 41.
    Wu N-L, Wang S-Y, Han C-Y, Wu D-S, Shiue L-R (2003) J Power Sources 113:173CrossRefGoogle Scholar
  42. 42.
    Wu NL (2002) Mater Chem Phys 75:6CrossRefGoogle Scholar
  43. 43.
    Wang SY, Wu NL (2003) J Appl Electrochem 33:345CrossRefGoogle Scholar
  44. 44.
    Cottineau T, Delahaye T, Brousse T, Bélanger D, in preparationGoogle Scholar
  45. 45.
    Prasad KR, Koga K, Miura N (2004) Chem Mater 16:1845CrossRefGoogle Scholar
  46. 46.
    Prasad KR, Miura N (2004) Electrochemistry Commun 6:849CrossRefGoogle Scholar
  47. 47.
    Lee HY, Goodenough JB (1999) J Solid-State Chem 148:81CrossRefADSGoogle Scholar
  48. 48.
    Cottineau T, Brousse T, Bélanger D, in preparationGoogle Scholar
  49. 49.
    Pourbaix M, de Zoubov N (1963) Atlas d’équilibres électrochimiques. Gautier-Villars, ParisGoogle Scholar
  50. 50.
    Hong MS, Lee SH, Kim SW (2002) Electrochem Solid-State Lett 5:A227CrossRefGoogle Scholar
  51. 51.
    Franger S, Bach S, Farcy J, Pereira-Ramos JP, Baffier N (2002) J Power Sources 109:262CrossRefGoogle Scholar
  52. 52.
    Zhou ZH, Wang J, Liu X (2001) J Mater Chem 11:1704CrossRefGoogle Scholar
  53. 53.
    Kudo T, Ikeda Y, Watanabe T (2002) Solid State Ionics 153:833CrossRefGoogle Scholar
  54. 54.
    Villers D, Jobin D, Soucy C, Cossement D, Chahine R, Breau L, Bélanger D (2003) J Electrochem Soc 150:A747CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • T. Cottineau
    • 1
  • M. Toupin
    • 2
  • T. Delahaye
    • 1
  • T. Brousse
    • 1
    • 2
  • D. Bélanger
    • 2
  1. 1.Laboratoire de Génie des MatériauxEcole polytechnique de l’Université de NantesNantes Cedex 3France
  2. 2.Département de ChimieUniversité du Québec à MontréalMontréalCanada

Personalised recommendations