Advertisement

Applied Physics A

, Volume 82, Issue 1, pp 63–66 | Cite as

Scanning tunnelling microscopy and electronic structure of Mn clusters on Ag(111)

  • J. Kliewer
  • R. Berndt
  • J. Minár
  • H. Ebert
Article

Abstract

Small Mn clusters (Mn1-Mn4) are prepared by manipulation of Mn adatoms on Ag(111) with the tip of a scanning tunnelling microscope. The apparent heights of the clusters are observed to increase monotonously from 1.6 Å for a monomer to 2.2 Å for a tetramer. Self-consistent calculations of the electronic structure of these clusters are in encouraging agreement with the experimental data.

Keywords

Scanning Tunnelling Microscopy Scanning Tunnelling Microscopy Image Spin Magnetic Moment Experimental Scanning Tunnelling Microscopy Scanning Tunnelling Microscopy Investigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meiwes-Broer K-H (ed) Metal Clusters at Surfaces. Springer Series in Cluster Physics, BerlinGoogle Scholar
  2. 2.
    Heiz U, Schneider W-D (2000) J. Phys. D 33:R85CrossRefADSGoogle Scholar
  3. 3.
    Messerli S, Schintke S, Morgenstern K, Sanchez A, Heiz U, Schneider W-D (2000) Surf. Sci. 465:331CrossRefADSGoogle Scholar
  4. 4.
    Nilius N, Wallis TM, Persson M, Ho W (2003) Phys. Rev. Lett. 90:196103PubMedCrossRefADSGoogle Scholar
  5. 5.
    Lee HJ, Ho W, Persson M (2004) Phys. Rev. Lett. 92:186802PubMedCrossRefADSGoogle Scholar
  6. 6.
    Madhavan V, Jamneala T, Nagaoka K, Chen W, Li J-L, Louie SG, Crommie MF (2002) Phys. Rev. B 66:212411CrossRefADSGoogle Scholar
  7. 7.
    Jamneala T, Madhavan V, Crommie MF (2001) Phys. Rev. Lett. 87:256804PubMedCrossRefADSGoogle Scholar
  8. 8.
    Wallis TM, Nilius N, Ho W (2002) Phys. Rev. Lett. 89:236802PubMedCrossRefADSGoogle Scholar
  9. 9.
    Fölsch S, Hyldgaard P, Koch R, Ploog KH (2004) Phys. Rev. Lett. 92:056803PubMedCrossRefADSGoogle Scholar
  10. 10.
    Kliewer J (2000) dissertation, RWTH Aachen, 52056 Aachen, GermanyGoogle Scholar
  11. 11.
    Eigler DM, Weiss PS, Schweizer EK, Lang ND (1991) Phys. Rev. Lett. 66:1189PubMedCrossRefADSGoogle Scholar
  12. 12.
    Crommie MF, Lutz CP, Eigler DM (1993) Science 262:218ADSGoogle Scholar
  13. 13.
    Eigler DM, Schweizer EK (1990) Nature 344:524CrossRefADSGoogle Scholar
  14. 14.
    Bartels L, Meyer G, Rieder K-H (1997) Phys. Rev. Lett. 79:697CrossRefADSGoogle Scholar
  15. 15.
    Li JT, Schneider W-D, Berndt R (1998) Appl. Phys. A 66:S675CrossRefADSGoogle Scholar
  16. 16.
    Eigler DM, Lutz CP, Rudge WE (1991) Nature 352:600CrossRefADSGoogle Scholar
  17. 17.
    Li JT (1997) dissertation, Institute of Experimental Physics, University of Lausanne, SwitzerlandGoogle Scholar
  18. 18.
    Zeller R, Lang P, Drittler B, Dederichs PH (1992) Mat. Res. Soc. Symp. Proc. 253:357Google Scholar
  19. 19.
    Vosko SH, Wilk L, Nusair M (1980) Can. J. Phys. 58:1200ADSCrossRefGoogle Scholar
  20. 20.
    Hofer WA, Foster AS, Shluger AL (2003) Rev. Mod. Phys. 75:1287CrossRefADSGoogle Scholar
  21. 21.
    Tersoff J, Hamann DR (1985) Phys. Rev. B 31:805CrossRefADSGoogle Scholar
  22. 22.
    Minár J et al (2005) these proceedings: Appl. Phys. A, submittedGoogle Scholar
  23. 23.
    Cabria I, Nonas B, Zeller R, Dederichs P (2002) Phys. Rev. B 65:054414CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Dept. Chemie und BiochemieUniversity of MunichMünchenGermany

Personalised recommendations