Advertisement

Applied Physics A

, Volume 82, Issue 3, pp 377–384 | Cite as

Diamond surfaces: familiar and amazing

  • J. RisteinEmail author
Article

Abstract

Diamond is the only wide band gap representative of the elemental semiconductors, with a crystal structure identical to its more common relatives silicon and germanium. On first glance one might also expect similar surface properties in terms of reconstructions, surface states, and surface band diagrams. In part, this expectation is indeed fulfilled, but diamond also exhibits a number of unusual and potentially very useful surface properties. Particularly when the surface dangling bonds are saturated by monovalent hydrogen atoms, (donor-like) surface states are removed from the gap, the electron affinity changes sign and becomes negative, and the material becomes susceptible to an unusual type of transfer doping where holes are injected by acceptors located at the surface instead of inside the host lattice. These surface acceptors can in the simplest case be adsorbed molecules conveniently chosen by their electron affinity, but they can also be solvated ions within atmospheric water layers or electrolytes in contact with the hydrogenated diamond surface. The understanding of those phenomena requires in fact concepts of surface science, semiconductor physics, and electrochemistry, which makes the diamond surface a true ‘interdisciplinary’ research topic.

Keywords

Lower Unoccupied Molecular Orbital Fullerene Molecule Surface Bond Diamond Surface Chemical Vapor Deposition Diamond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nebel CE, Ristein J (eds) Thin-Film Diamond I and II (Semicond Semimet 76–77) (Elsevier/Academic, New York, 2003–2004)Google Scholar
  2. 2.
    Isberg J, Hammersberg J, Johansson E, Mikström T, Twitchen DJ, Whitehead AJ, Coe SE, Scarsbrook GA (2002) Science 297:1670CrossRefPubMedADSGoogle Scholar
  3. 3.
    Kaiser W, Bond WL (1959) Phys Rev 115:857CrossRefADSGoogle Scholar
  4. 4.
    Jiang X et al (1993) Appl Phys Lett 62:3438CrossRefADSGoogle Scholar
  5. 5.
    Stoner BR, Glass JT (1992) Appl Phys Lett 60:698CrossRefADSGoogle Scholar
  6. 6.
    Schreck M, Roll H, Stritzker B (1999) Appl Phys Lett 74:650CrossRefADSGoogle Scholar
  7. 7.
    Kern G, Hafner J, Furthmüller J, Kresse G (1996) Surf Sci 352–354:745CrossRefGoogle Scholar
  8. 8.
    Graupner R et al (1997) Phys Rev B 55:10841CrossRefGoogle Scholar
  9. 9.
    Graupner R et al (1999) Phys Rev B 60:18023Google Scholar
  10. 10.
    Frauenheim T et al (1993) Phys Rev B 48:18189CrossRefGoogle Scholar
  11. 11.
    Jing Z, Whitten JL (1994) Surf Sci 314:300CrossRefADSGoogle Scholar
  12. 12.
    Zheng JC et al (2001) Diamond Relat Mater 10:500CrossRefGoogle Scholar
  13. 13.
    Wang YM et al (2000) Diamond Relat Mater 9:1582CrossRefGoogle Scholar
  14. 14.
    Zheng XM, Smith PV (1992) Surf Sci 262:219CrossRefADSGoogle Scholar
  15. 15.
    Pandey KC (1981) Phys Rev Lett 47:1913CrossRefADSGoogle Scholar
  16. 16.
    Kern G et al (1996) Surf Sci 366:445; note that Figs. 5 and 7 in this publication have been erroneously exchangedCrossRefADSGoogle Scholar
  17. 17.
    M. Marsili, O. Pulci, F. Bechstedt, R. del Sole, Phys. Rev. B, in pressGoogle Scholar
  18. 18.
    Loh KP et al (2002) Diamond Relat Mater 11:1379CrossRefGoogle Scholar
  19. 19.
    Hanney NB, Smith CP (1946) J Am Chem Soc 68:171CrossRefGoogle Scholar
  20. 20.
    Topping J (1927) Proc R Soc London 114:67CrossRefGoogle Scholar
  21. 21.
    Maier F, Ristein J, Ley L (2001) Phys Rev B 64:165411/1-7; note that the units of the dipole moment and the exponent of the polarizability of the C-H bonds were mistyped in this publicationCrossRefADSGoogle Scholar
  22. 22.
    Cui JB, Ristein J, Ley L (1998) Phys Rev Lett 81:429CrossRefADSGoogle Scholar
  23. 23.
    Cui JB, Ristein J, Ley L (1999) Phys Rev B 59:5847CrossRefADSGoogle Scholar
  24. 24.
    Landstrass IM, Ravi KV (1989) Appl Phys Lett 55:975 and 1391CrossRefADSGoogle Scholar
  25. 25.
    Maier F et al (2000) Phys Rev Lett 85:3472CrossRefPubMedADSGoogle Scholar
  26. 26.
    Ristein J et al (2002) Diamond Relat Mater 11:359CrossRefGoogle Scholar
  27. 27.
    Takeuchi D et al (2003) Phys Rev B 68:041304(R)CrossRefADSGoogle Scholar
  28. 28.
    Riedel M et al (2004) Diamond Relat Mater 13:746CrossRefGoogle Scholar
  29. 29.
    Riedel M et al (2004) Phys Rev B 69:125338CrossRefADSGoogle Scholar
  30. 30.
    Goss JP et al (2001) J Phys Condens Matter 13:8973CrossRefADSGoogle Scholar
  31. 31.
    Strobel P, Riedel M, Ristein J, Ley L (2004) Nature 430:439CrossRefPubMedADSGoogle Scholar
  32. 32.
    Strobel P, Riedel M, Ristein J, Ley L (2005) Diam Relat Mater 14:451CrossRefGoogle Scholar
  33. 33.
    Kawarada H (1996) Surf Sci Rep 26:205CrossRefADSGoogle Scholar
  34. 34.
    Maier F, Graupner R, Hollering M, Hammer L, Ristein J, Ley L (1999) Surf. Sci. 443:177CrossRefADSGoogle Scholar
  35. 35.
    Kern G, Hafner J (1997) Phys. Rev. B 56:4203CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Technical PhysicsUniversity of ErlangenErlangenGermany

Personalised recommendations