Skip to main content

Advertisement

Log in

Study of the bending modulus of individual silicon nitride nanobelts via atomic force microscopy

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Analysis of the bending modulus of individual silicon nitride nanobelts in elastic regime is reported here. The nanobelts have the size between 200∼800 nm in width, and thickness 20∼50 nm. Atomic force microscopy was used to image and to perform measurements of force versus bending displacement on individual nanobelts suspending over strips. The bending modulus Eb is deduced by comparison of the measured force curves on the substrate and on the suspending nanobelts. It is shown that the elastic modulus of the silicon nitride nanobelts is about 570 GPa, which is much larger than that of bulk and film of the silicon nitride material. The larger elastic modulus is ascribed to the fact there are less structural defects in the silicon nitride nanobelts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ziegler G, Heinrich J, Wötting G (1987) J Mater Sci 22:3041

    Article  ADS  Google Scholar 

  2. Muscat D, Pugh MD, Drew RAL, Pickup H, Steele D (1992) J Am Ceram Soc 75:2713

    Article  Google Scholar 

  3. Chen IW, Becher PF, Mitomo M, Petzow G, Yen T-S (eds) (1993) Silicon Nitride Ceramics – Scientific and Technological Advances. MRS Proceedings, Mater Res Soc 287, Pittsburgh, Pennsylvania

  4. Hoffmann MJ, Petzow G (eds) (1994) Tailoring of Mechanical Properties of Si3N4 Ceramics NATO ASISeries E Applied Sciences Vol 276. Kluwer Academic, Dordrecht

  5. Vogelgesang R, Grimsditch M, Wallace JS (2000) Appl Phys Lett 76:982

    Article  ADS  Google Scholar 

  6. Ashby MF, Jones DRH (1980) Engineering Materials, Vol 1. Pergamon, Oxford

    Google Scholar 

  7. Tabata O, Sugiyama S, Takigawa M (1990) Appl Phys Lett 56:1314

    Article  ADS  Google Scholar 

  8. Hollman P, Alahelisten A, Olsson M, Hogmark S (1995) Thin Solid Films 270:137

    Article  ADS  Google Scholar 

  9. Lide DR (1983) CRC Handbook of Chemistry and Physics, 63rd ed. CRC Press, Boca Raton

    Google Scholar 

  10. Yakobson BI, Brabec CJ, Bernholc J (1996) Phys Rev Lett 76:2511

    Article  ADS  Google Scholar 

  11. Xin Z, Jianjun Z, Zhong-can O-Y (2000) Phys Rev B 62:13692

    Article  Google Scholar 

  12. Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971

    Article  Google Scholar 

  13. Wang ZL, Dai ZR, Gao R, Gole JL (2002) J Electron Microsc 51:79

    Article  Google Scholar 

  14. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678

    Article  ADS  Google Scholar 

  15. Lu J (1997) Phys Rev Lett 79:1297

    Article  ADS  Google Scholar 

  16. Durkan C, Ilie A, Saifullah MSM, Welland ME (2002) Appl Phys Lett 80:4244

    Article  ADS  Google Scholar 

  17. Cuenot S, Demoustier-Champagne S, Nysten B (2000) Phys Rev Lett 85:1690

    Article  ADS  Google Scholar 

  18. Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, Smalley RE (1999) Appl Phys Lett 74:3803

    Article  ADS  Google Scholar 

  19. Salvetat J-P, Briggs GAD, Bonard J-M, Bacsa RR, Kulik AJ, Stöckli T, Burnham NA, Forró L (1999) Phys Rev Lett 82:944

    Article  ADS  Google Scholar 

  20. Tombler TW, Zhou CW, Alexseyev L, Kong J, Dai HJ, Lei L, Jayanthi CS, Tang MJ, Wu SY (2000) Nature 405:769

    Article  ADS  Google Scholar 

  21. Cao J, Wang Q, Dai H (2003) Phys Rev Lett 90:157601

    Article  ADS  Google Scholar 

  22. Minot ED, Yaish Y, Sazonova V, Park J-Y, Brink M, McEuen PL (2003) Phys Rev Lett 90:156401

    Article  ADS  Google Scholar 

  23. Zhang YJ, Wang NL, He RR, Zhang Q, Zhu J, Yan YJ (2000) J Mater Res 15(5):1048

    Article  ADS  Google Scholar 

  24. Yang WY, Miao HZ, Xie ZP, Zhang L, An L (2004) Chem Phys Lett 383:441

    Article  ADS  Google Scholar 

  25. Beer FP, Johnston Jr ER (1992) Mechanics of Materials. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.P. Yu.

Additional information

PACS

81.70.Bt; 81.40.Lm; 61.80.+g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, G., Ji, H., Yang, W. et al. Study of the bending modulus of individual silicon nitride nanobelts via atomic force microscopy. Appl. Phys. A 82, 475–478 (2006). https://doi.org/10.1007/s00339-005-3335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3335-9

Keywords

Navigation