Applied Physics A

, Volume 81, Issue 8, pp 1569–1581 | Cite as

Variable UV laser exposure processing of photosensitive glass-ceramics: maskless micro- to meso-scale structure fabrication

Invited paper


A novel variable UV laser processing technique was developed that enables the concurrent fabrication of structures in photosensitive glass-ceramic (PSGC) materials that range from the micro-scale to the meso-scale domains. This technique combines the advantages of direct-write volumetric laser patterning and batch chemical processing. The merged non-thermal laser fabrication approach relies on the ability to precisely and selectively alter the chemical etch rate of the PSGC by varying the laser exposure during pattern formation. The present study determined that the chemical etch rate of a commercial photosensitive glass-ceramic (FoturanTM, Schott Corp., Germany) in dilute hydrofluoric (HF) acid is strongly dependent on the incident laser irradiance during patterning at λ=266 nm and λ=355 nm. For low laser irradiances, the etch rate ratio (Rexposed/Runexposed) increased nearly linearly with laser irradiance. The slopes of the linear ranges of the etch rate ratios were measured to be 435.9±46.7 μm2/mW and 46.2±2.3 μm2/mW for λ=266 nm and λ=355 nm, respectively. For high laser irradiances, the measured etch rate ratio saturated at ∼30:1 with a maximum absolute etch rate of 18.62±0.30 μm/min. The maximum absolute chemical etch rate was independent of the exposure wavelength. Consequently, variation of the laser exposure during direct-write patterning permits the formation of variegated and proximal high and low aspect ratio structures on a common substrate. The results show that adjacent microstructures with aspect ratios ranging from <1:1 to ∼30:1 can be fabricated in a single, simultaneous batch chemical etch step without the need for a complex masking sequence or post-process ablation step. This new technique facilitates rapid prototype processing with pattern and component uniformity, and achieves material processing over large areas without incurring high cost.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brannon J, Greer J, Helvajian H (1999) Laser Processing for Microengineering Applications. In: Helvajian H (ed) Microengineering Aerospace Systems. The Aerospace Press, El SegundoGoogle Scholar
  2. 2.
    Ikushima AJ, Fujiwara T, Saito K (2000) J Appl Phys 88:1201CrossRefADSGoogle Scholar
  3. 3.
    Becker H, Arundell M, Harnisch A, Hulsenberg D (2002) Sens Actuators B 86:271CrossRefGoogle Scholar
  4. 4.
    Toner M, Buettner H (1998) Biotechnol Prog 14:355CrossRefPubMedGoogle Scholar
  5. 5.
    Holand W, Beall GH (2002) Glass-Ceramic Technology. The American Ceramic Society, Westerville, OHGoogle Scholar
  6. 6.
    Stookey SD (1959) Indust Eng Chem 51:805CrossRefGoogle Scholar
  7. 7.
    Tashiro T, Wada M (1963) Glass-Ceramics Crystallized with Zirconia. In: Advances in Glass Technology. Plenum, New YorkGoogle Scholar
  8. 8.
    Pincus AG (1971) Application of Glass-Ceramics. In: Hench LL, Frieman SW (eds) Advances in Nucleation and Crystallization in Glasses. The American Ceramic Society, Columbus, OHGoogle Scholar
  9. 9.
    Stookey SD (1953) Indust Eng Chem 45:115CrossRefGoogle Scholar
  10. 10.
    Stookey SD (1949) Indust Eng Chem 41:856CrossRefGoogle Scholar
  11. 11.
    Grossman DG (1982) Glass-Ceramic Application. In: Simmons JH, Uhlmann DR, Beall GH (eds) Nucleation and Crystallization in Glasses. The American Ceramic Society, Columbus, OHGoogle Scholar
  12. 12.
    Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Anal Chem 74:2623CrossRefPubMedGoogle Scholar
  13. 13.
    Morgan CJ, Vallance RR, Marsh ER (2004) J Micromech Microeng 14:1687CrossRefGoogle Scholar
  14. 14.
    Mosier-Boss PA, Newberry R, Szpak S, Lieberman SH (1996) Anal Chem 68:3277CrossRefGoogle Scholar
  15. 15.
    Hirao K (2000) Proc SPIE 4088:33CrossRefADSGoogle Scholar
  16. 16.
    Kirby KW, Jankiewicz AT (1998) J Laser Appl 10:1CrossRefGoogle Scholar
  17. 17.
    Dietrich TR, Ehrfeld W, Lacher M, Kramer M, Speit B (1996) Microelec Eng 30:497CrossRefGoogle Scholar
  18. 18.
    Brock PJ, Levenson MD, Zavislan JM, Lyerla JR (1991) J Vac Sci Technol B 9:3155CrossRefGoogle Scholar
  19. 19.
    Berezhnoi A (1970) Glass-Ceramics and Photo-Sitalls. Plenum, New YorkGoogle Scholar
  20. 20.
    Hansen WW, Janson SW, Helvajian H (1997) Proc SPIE 2991:104CrossRefADSGoogle Scholar
  21. 21.
    Fuqua PD, Taylor DP, Helvajian H, Hansen WW, Abraham MH (2000) Mat Res Soc Symp Proc 624:79Google Scholar
  22. 22.
    Janson SW, Huang A, Hansen WW, Helvajian H (2004) AIAA paper 2004–6701, Conference on Micro-Nano-Technologies, Monterey, CA, USAGoogle Scholar
  23. 23.
    Sugioka K, Masuda M, Hongo T, Cheng Y, Shihoyama K, Midorikawa K (2004) Appl Phys A 79:815CrossRefADSGoogle Scholar
  24. 24.
    Kim J, Berberoglu H, Xu X (2004) J Microlith Microfab Microsyst 3:478CrossRefGoogle Scholar
  25. 25.
    Cheng Y, Sugioka K, Masuda M, Shihoyama K, Toyoda K, Midorikawa K (2003) Proc SPIE 5063:103CrossRefADSGoogle Scholar
  26. 26.
    Masuda M, Sugioka K, Cheng Y, Hongo T, Shihoyama K, Takai H, Miyamoto I, Midorikawa K (2004) Appl Phys A 78:1029CrossRefADSGoogle Scholar
  27. 27.
    Livingston FE, Helvajian H (2004) US Patent No 6,783,920, issued Aug 31Google Scholar
  28. 28.
    Livingston FE, Adams PM, Helvajian H (2005) submitted to J Appl PhysGoogle Scholar
  29. 29.
    Livingston FE, Adams PM, Helvajian H (2004) Proc SPIE 5662:44CrossRefADSGoogle Scholar
  30. 30.
    Livingston FE, Adams PM, Helvajian H (2004) Appl Surf Sci 247:526CrossRefADSGoogle Scholar
  31. 31.
    Livingston FE, Helvajian H (2005) Photophysical Processes that Lead to Ablation-Free Microfabrication in Glass-Ceramic Materials. In: 3D Laser Microfabrication. Misawa H, Juodkazis S (eds) Wiley-VCH Verlag GmbH & Co Weinheim, Germany, in pressGoogle Scholar
  32. 32.
    Livingston FE, Hansen WW, Huang A; Helvajian HH (2002) Proc SPIE 4637:404CrossRefADSGoogle Scholar
  33. 33.
    Livingston FE, Helvajian H (2003) Proc SPIE 4830:189CrossRefADSGoogle Scholar
  34. 34.
    Talkenberg M, Kreutz EW, Horn A, Jacquorie M, Poprawe R (2002) Proc SPIE 4637:258CrossRefADSGoogle Scholar
  35. 35.
    Stroud JS (1962) J Chem Phys 37:836CrossRefADSGoogle Scholar
  36. 36.
    Stroud JS (1961) J Chem Phys 35:844CrossRefADSGoogle Scholar
  37. 37.
    Arbuzov V (1999) J Non-Cryst Solids 253:37CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Micro/Nano Technology, Space Materials LaboratoryThe Aerospace CorporationEl SegundoUSA

Personalised recommendations