Applied Physics A

, Volume 81, Issue 6, pp 1109–1112 | Cite as

Optically transparent composites reinforced with plant fiber-based nanofibers

  • S. Iwamoto
  • A.N. Nakagaito
  • H. YanoEmail author
  • M. Nogi
Rapid communication


The fibrillation of pulp fiber was attempted by two methods, a high-pressure homogenizer treatment and a grinder treatment. The grinder treatment resulted in the successful fibrillation of wood pulp fibers into nanofibers. The nanofibers demonstrate promising characteristics as reinforcement material for optically transparent composites. Due to the size effect, the nanofiber-reinforced composite retains the transparency of the matrix resin even at high fiber content such as 70 wt %. Since the nanofiber is an aggregate of semi-crystalline extended cellulose chains, its addition also contributes to a significant improvement in the thermal expansion properties of plastics while maintaining its ease of bending. Cellulose nanofibers have tremendous potential as a future resource since they are produced in a sustainable manner by plants, one of the most abundant organic resources on earth.


Fiber Content Cellulose Chain Matrix Resin Organic Resource Pulp Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.C. O’Sullivan: Cellulose 4, 173 (1997)CrossRefGoogle Scholar
  2. 2.
    D.H. Page, F. El-Hosseiny: J. Pulp Pap. Sci. 9, 99 (1983)Google Scholar
  3. 3.
    T. Nishino, K. Takano, K. Nakamae: J. Polym. Sci. Pol. Phys. 33, 1647 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    L.H. Sperling: Introduction to Physical Polymer Science (John Wiley & Sons Inc, New York 2001) p. 499Google Scholar
  5. 5.
    T. Nishino, Personal communication, 2003, Kobe University, JapanGoogle Scholar
  6. 6.
    L.A. Berglund: Natural Fibers, Biopolymers, and Their Biocomposites, ed. by M.A.D. Mohanty, M. Misra, L.T. Druzal (CRC Press LLC 2005) Chapt. 26Google Scholar
  7. 7.
    A.N. Nakagaito, H. Yano: Appl. Phys. A 80, 155 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    A.N. Nakagaito, H. Yano: Appl. Phys. A 78, 547 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    H. Yano, S. Nakahara: J. Mater. Sci. 39, 1635 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    A. Dufresne, J.Y. Cavaille, M.R. Vignon: J. Appl. Polym. Sci. 64, 1185 (1997)CrossRefGoogle Scholar
  11. 11.
    A. Dufresne, D. Duplyre, M.R. Vig-non: J. Appl. Polym. Sci. 76, 2080 (2000)CrossRefGoogle Scholar
  12. 12.
    T. Zimmermann, E. Pohler, T. Geiger: Adv. Eng. Mater 6, 754 (2004)CrossRefGoogle Scholar
  13. 13.
    R. Funada, K. Takabe, M. Wada: Secondary Xylem Formation – Introduction to Biomass Science, ed. by K. Fukushima, et al. (Kaiseisha Press 2003) pp. 65, 92Google Scholar
  14. 14.
    H. Yano, J. Sugiyama, A.N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, K. Handa: Adv. Mater. 17, 153 (2005)CrossRefGoogle Scholar
  15. 15.
    A.F. Turbak, F.W. Snyder, K.R. Sandberg: J. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 815 (1983)Google Scholar
  16. 16.
    F.W. Herrick, R.L. Casebier, J.K. Hamil-ton, K.R. Sandberg: J. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 797 (1983)Google Scholar
  17. 17.
    T. Taniguchi, K. Okamura: Polym. Int. 47, 291 (1998)CrossRefGoogle Scholar
  18. 18.
    M.F. Ashby: Materials Selection in Mechanical Design (Pergamon Press Ltd., Oxford 1993) p. 121Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Research Institute for Sustainable HumanosphereKyoto UniversityKyotoJapan
  2. 2.International Innovation CenterKyoto UniversityKyotoJapan

Personalised recommendations