Applied Physics A

, Volume 81, Issue 5, pp 893–900 | Cite as

Studies of resolidification of non-thermally molten InSb using time-resolved X-ray diffraction

  • M. Harbst
  • T.N. Hansen
  • C. Caleman
  • W.K. Fullagar
  • P. Jönsson
  • P. Sondhauss
  • O. Synnergren
  • J. Larsson
Rapid communication

Abstract

We have used time-resolved X-ray diffraction to monitor the resolidification process of molten InSb. Melting was induced by an ultra-short laser pulse and the measurement conducted in a high-repetition-rate multishot experiment. The method gives direct information about the nature of the transient regrowth and permanently damaged layers. It does not rely on models based on surface reflectivity or second harmonic generation (SHG). The measured resolidification process has been modeled with a 1-D thermodynamic heat-conduction model. Important parameters like sample temperature, melting depth and amorphous surface layer thickness come directly out of the data, while mosaicity of the sample and free carrier density can be quantified by comparing with models. Melt depths up to 80 nm have been observed and regrowth velocities in the range 2–8 m/s have been measured.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.V. Shank, R. Yen, C. Hirlimann: Phys. Rev. Lett. 50, 454 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    P.H. Bucksbaum, J. Bokor: Phys. Rev. Lett. 53, 182 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    M.O. Thompson, J.W. Mayer, A.G. Cullis, H.C. Webber, N.G. Chew, J.M. Poate, D.C. Jacobson: Phys. Rev. Lett. 50, 896 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    J. Bonse, S.M. Wiggins, J. Solis: J. App. Phys. 96, 2352 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    K. Sokolowski-Tinten, D. von der Linde: J. Phys.: Condens. Matter 16, R1517 (2004)Google Scholar
  6. 6.
    I.L. Shumay, U. Höfer: Phys. Rev. B53, 15878 (1996)Google Scholar
  7. 7.
    A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin: Nature 410, 65 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan: J. Appl. Phys. 89, 5815 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov: Phys. Rev. Lett. 81, 224 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    R. Cerný, V. Cháb, G. Ivlev, E. Gatskevich, P. Prikyl: Phys. Rev. B59, 10685 (1999)Google Scholar
  11. 11.
    D. Perez, L.J. Lewis: Phys. Rev. B67, 184102 (2003)Google Scholar
  12. 12.
    S. Svanberg: Atomic and Molecular Spectroscopy (Springer-Verlag Berlin Heidelberg New York 2001)Google Scholar
  13. 13.
    V.A. Bushuev: Sov. Phys. Crystallogr. 34, 163 (1989)Google Scholar
  14. 14.
    J. Larsson, A. Allen, P.H. Bucksbaum, R.W. Falcone, A. Lindenberg, G. Naylor, T. Missalla, D.A. Reis, K. Scheidt, A. Sjögren, P. Sondhauss, M. Wulff, J.S. Wark: Appl. Phys. A75, 467 (2002)Google Scholar
  15. 15.
    S. Nakamura, T. Hibiya, F. Yamamoto: J. App. Phys. 68, 5125 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Harbst
    • 1
  • T.N. Hansen
    • 1
  • C. Caleman
    • 2
  • W.K. Fullagar
    • 3
  • P. Jönsson
    • 4
  • P. Sondhauss
    • 1
  • O. Synnergren
    • 1
    • 4
  • J. Larsson
    • 1
  1. 1.Atomic Physics DivisionLund Institute of TechnologyLundSweden
  2. 2.Department of Cell and Molecular Biology, Biomedical CentreUppsala UniversityUppsalaSweden
  3. 3.Chemical PhysicsKemicentrumLundSweden
  4. 4.School of Technology and SocietyMalmö UniversityMalmöSweden

Personalised recommendations