Applied Physics A

, Volume 81, Issue 3, pp 477–479

Catalytic synthesis and photoluminescence of silicon oxide nanowires and nanotubes

  • Z. Jiang
  • T. Xie
  • X.Y. Yuan
  • B.Y. Geng
  • G.S. Wu
  • G.Z. Wang
  • G.W. Meng
  • L.D. Zhang
Article

Abstract

A large quantity of nanowires and nanotubes of silicon oxide are produced by using Fe–Co–Ni alloy nanoparticles as catalyst. The products have a uniform diameter of around 100 nm. The nanowires have a smooth surface and the lengths are up to 100 μm or more. A new morphology called a serrated joint nanotube was found. The alloy catalyst plays a key role in the synthesis process. Room-temperature photoluminescence measurement under excitation at 360 nm showed that the silicon oxide had a strong blue-green emission at 525 nm (about 2.36 eV), which may be related to oxygen defects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.S. Liao, X.M. Bao, X.Q. Zheng, N.S. Li, N.B. Min: Appl. Phys. Lett. 68, 850 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohiki, K. Nagasawa, Y. Hama: Phys. Rev. B 45, 586 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    See for example A.P. Legrand (Ed.): The Surface Properties of Silicas (Wiley, New York 1998)Google Scholar
  4. 4.
    B. Zheng, Y. Wu, P. Yang, J. Liu: Adv. Mater. 14, 122 (2002)CrossRefGoogle Scholar
  5. 5.
    C.H. Liang, L.D. Zhang, G.W. Meng, Y.W. Wang, Z.Q. Chu: J. Non-Cryst. Solids 63, 277 (2000)Google Scholar
  6. 6.
    D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, S.Q. Feng: Appl. Phys. Lett. 73, 3076 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang: J. Am. Chem. Soc. 124, 1817 (2002)CrossRefGoogle Scholar
  8. 8.
    R. Ma, Y. Bando: Chem. Phys. Lett. 377, 177 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Y.B. Li, Y. Bando, D. Golberg: Adv. Mater. 16, 37 (2004)CrossRefGoogle Scholar
  10. 10.
    Z.L. Wang, R.P. Gao, J.L. Gole, J.D. Stout: Adv. Mater. 12, 1938 (2000)CrossRefGoogle Scholar
  11. 11.
    M. Zhang, Y. Bando, K. Wada, K. Kurashima: J. Mater. Sci. Lett. 18, 1911 (1999)CrossRefGoogle Scholar
  12. 12.
    R. Fan, Y.Y. Wu, D.Y. Li, M. Yue, A. Majumdar, P.D. Yang: J. Am. Chem. Soc. 125, 5254 (2003)CrossRefGoogle Scholar
  13. 13.
    E. Flahaut, A. Govindaraj, A. Peigney, C. Laurent, A. Rousset, C.N.R. Rao: Chem. Phys. Lett. 300, 236 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    H.F. Zhang, C.M. Wang, E.C. Buck, L.S. Wang: Nano Lett. 3, 577 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    D.P. Yu, C.S. Lee, I. Bello, X.S. Sun, Y.H. Tang, G.W. Zhou, Z.G. Bai, Z. Zhang, S.Q. Feng: Solid State Commun. 105, 405 (1998)ADSGoogle Scholar
  16. 16.
    D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, H.T. Zhou, S.Q. Feng: Appl. Phys. Lett. 72, 3458 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, Z. Zhang: Appl. Phys. Lett. 72, 1966 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Morales, C.M. Lieber: Science 279, 208 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    R.S. Wagner, W.C. Ellis: Appl. Phys. Lett. 4, 89 (1964)ADSCrossRefGoogle Scholar
  20. 20.
    E.I. Givargizov: J. Cryst. Growth 31, 20 (1975)ADSCrossRefGoogle Scholar
  21. 21.
    J.H. Stathis, M.A. Kastner: Phys. Rev. B 35, 2972 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    C. Itoh, T. Suzuki, N. Itoh: Phys. Rev. B 41, 3794 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Z. Jiang
    • 1
  • T. Xie
    • 1
  • X.Y. Yuan
    • 1
  • B.Y. Geng
    • 1
  • G.S. Wu
    • 1
  • G.Z. Wang
    • 1
  • G.W. Meng
    • 1
  • L.D. Zhang
    • 1
  1. 1.Institute of Solid State PhysicsChinese Academy of SciencesHefeiP.R. China

Personalised recommendations