Applied Physics A

, Volume 81, Issue 2, pp 245–247 | Cite as

The fabrication technique and electrical properties of a free-standing GaN nanowire

  • H.Y. YuEmail author
  • B.H. Kang
  • C.W. Park
  • U.H. Pi
  • C.J. Lee
  • S.-Y. Choi
Rapid communication


We fabricated a free-standing structure of a GaN nanowire by selectively etching Si3N4, previously grown on a SiO2 substrate, for application to three-dimensional integrated circuits such as nanorelays and actuators. In the nanowire-deposition process we adopted electrophoresis and reactive ion etching techniques to achieve a well-aligned and free-standing nanowire. The electrical transport measurements were performed from room temperature down to liquid-nitrogen temperature. The current–voltage (I–V) characteristics showed a rectifying behavior in the whole temperature range. We analyze this property as a Schottky barrier formation between the nanowire and electrodes.


SiO2 Electrophoresis Electrical Property Electronic Material Integrate Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Guo, M.S. Feng, R.J. Guo, F.M. Pan, C.Y. Chang: Appl. Phys. Lett. 67, 1289 (2001)Google Scholar
  2. 2.
    T. Arai, H. Sueyoshi, Y. Koide, M. Moriyama, M. Murakami: J. Appl. Phys. 89, 2826 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang: Nature 422, 599 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    K.H. Choi, J.P. Bourgoin, S. Auvray, D. Esteve, G.S. Duesberg, S. Roth, M. Burghard: Surf. Sci. 462, 195 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai: Nature 395, 878 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    A. Ural, Y. Li, H. Dai: Appl. Phys. Lett. 81, 3464 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    K. Yamamoto, S. Akita, Y. Nakayama: J. Phys. D 31, L34 (998)Google Scholar
  8. 8.
    R. Krupke, F. Hennrich, H. v. Löhneysen, M. Kappes: Science 301, 344 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    S.W. Lee, D.S. Lee, H.Y. Yu, E.E.B. Campbell, Y.W. Park: Appl. Phys. A 78, 283 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    R. Krupke, F. Hennrich, H.B. Weber, M. Kappes, H. v. Löhneysen: Nano. Lett. 3, 1019 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Huang, X. Duan, Q. Wei, C.M. Lieber: Science 291, 630 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber: Nature 409, 66 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber: Science 294, 1313 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber: Science 293, 1455 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber: Science 293, 1289 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Cui, C.M. Lieber: Science 291, 851 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber: Science 302, 1377 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    S.C. Lyu, O.H. Cha, E.K. Suh, H. Ruh, H.J. Lee, C.J. Lee: Chem. Phys. Lett. 367, 136 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki: Appl. Phys. Lett. 63, 2676 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • H.Y. Yu
    • 1
    Email author
  • B.H. Kang
    • 1
  • C.W. Park
    • 1
  • U.H. Pi
    • 1
  • C.J. Lee
    • 2
  • S.-Y. Choi
    • 1
  1. 1.Electronics and Telecommunications Research InstituteFuture Technology DivisionDaejeonSouth Korea
  2. 2.Department of NanotechnologyHanyang UniversitySeoulSouth Korea

Personalised recommendations