Applied Physics A

, Volume 81, Issue 2, pp 241–244 | Cite as

Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica

  • D.G. Papazoglou
  • I. ZergiotiEmail author
  • S. Tzortzakis
  • G. Sgouros
  • G. Maravelias
  • S. Christopoulos
  • C. Fotakis
Rapid communication


We present experiments with sub-picosecond ultraviolet laser pulses (248 nm, 450 fs) tightly focused in the bulk of fused-silica samples. The high laser intensities attained generate plasma through multi-photon absorption and electron avalanche processes in the bulk of the material. Depending on the initial experimental conditions three distinct types of structural changes in the material are observed, from small changes of the refractive index to birefringence, and even cracks and voids. We also observe the creation of micro-channels, up to 115 μm in length, inside the material due to self-guiding and filamentation of the laser pulses in the transparent material. The selective change of the refractive index is a promising method for the fabrication of photonic structures such as waveguides and three-dimensional integrated optical devices.


Refractive Index Laser Pulse Fuse Silica Laser Intensity Promising Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Du, X. Liu, G. Korn, J. Squier, G. Mourou: Appl. Phys. Lett. 64, 3071 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    K.M. Davies, K. Miura, N. Sugimoto, K. Hirao: Opt. Lett. 21, 1729 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Mazur: Opt. Lett. 24, 2023 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    E. Bricchi, J.D. Mills, P. Kazansky, B. Klappauf, J. Baumberg: Opt. Lett. 27, 2200 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    S. Nolte, M. Will, J. Bughoff, A. Tuennermann: Appl. Phys. A 77, 109 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    C.B. Schaffer, A. Brodeur, E. Mazur: Meas. Sci. Technol. 12, 1784 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz: Phys. Rev. Lett. 89, 186601 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Luo, W. Liu, S.L. Chin: Appl. Phys. B 76, 337 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    S. Tzortzakis, B. Lamouroux, A. Chiron, M. Franco, B. Prade, A. Mysyrowicz, S. Moustaizis: Opt. Lett. 25, 1270 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, L. Bergé: Phys. Rev. Lett. 87, 213902 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Mazur: Opt. Lett. 21, 2023 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P.G. Kazansky, K. Hirao: Opt. Lett. 24, 646 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    K. Hirao, K. Miura: J. Non-Cryst. Solids 239, 91 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • D.G. Papazoglou
    • 1
  • I. Zergioti
    • 3
    Email author
  • S. Tzortzakis
    • 2
    • 3
  • G. Sgouros
    • 1
  • G. Maravelias
    • 3
  • S. Christopoulos
    • 3
  • C. Fotakis
    • 1
  1. 1.Institute of Electronic Structure and LaserFoundation for Research and Technology – HellasHeraklionGreece
  2. 2.Laboratoire d’Utilisation des Lasers IntensesEcole PolytechniquePalaiseauFrance
  3. 3.Physics DepartmentNational Technical University of AthensZografouGreece

Personalised recommendations