Applied Physics A

, Volume 81, Issue 2, pp 223–240

In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition

  • A.A. Puretzky
  • D.B. Geohegan
  • S. Jesse
  • I.N. Ivanov
  • G. Eres
Invited paper

Abstract

Direct measurements of carbon nanotube growth kinetics are described based upon time-resolved reflectivity (TRR) of a HeNe laser beam from vertically aligned nanotube arrays (VANTAs) as they grow during chemical vapor deposition (CVD). Growth rates and terminal lengths were measured in situ for VANTAs growing during CVD between 535 °C and 900 °C on Si substrates with evaporated Al/Fe/Mo multi-layered catalysts and acetylene feedstock at different feedstock partial pressures. Methods of analysis of the TRR signals are presented to interpret catalyst particle formation and oxidation, as well as the porosity of the VANTAs. A rate-equation model is developed to describe the measured kinetics in terms of activation energies and rate constants for surface carbon formation and diffusion on the catalyst nanoparticle, nanotube growth, and catalyst over-coating. Taken together with the TRR data, this model enables basic understanding and optimization of growth conditions for any catalyst/feedstock combination. The model lends insight into the main processes responsible for the growth of VANTAs, the measured number of walls in the nanotubes at different temperatures, conditions for growth of single-wall carbon nanotube arrays, and likely catalyst poisoning mechanisms responsible for the sharp decline in growth rates observed at high temperatures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Dai: Acc. Chem. Res. 35, 1035 (2002)CrossRefGoogle Scholar
  2. 2.
    R. Andrews, D. Jacques, D. Qian, T. Rantell: Acc. Chem. Res. 35, 1008 (2002)CrossRefGoogle Scholar
  3. 3.
    R.T.K. Baker: Carbon 27, 315 (1989)CrossRefGoogle Scholar
  4. 4.
    S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrrup-Nielsen, F. Abild-Petersen, J.K. Norskov: Nature 427, 426 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    J.-M. Bonard, M. Croci, F. Conus, T. Stöckli, A. Chatelain: Appl. Phys. Lett. 81, 2836 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    D.B. Geohegan, A.A. Puretzky, I.N. Ivanov, S. Jesse, G. Eres, J.Y. Howe: Appl. Phys. Lett. 83, 1851 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    D.H. Kim, H.S. Jang, C.D. Kim, D.S. Cho, H.S. Yang, H.O. Kang, B.K. Min, H.R. Lee: Nanoletters 3, 863 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, D. Wu: Chem. Phys. Lett. 362, 285 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Y.T. Lee, J. Park, Y.S. Choi, H. Ryu, H.J. Lee: J. Phys. Chem. B 106, 7614 (2002)CrossRefGoogle Scholar
  10. 10.
    Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Wu, W.Y. Zhou, W.Z. Li, L.X. Qian: Nature 394, 631 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    L. Delzeit, C.V. Nguyen, B. Chen, R. Stevens, A. Cassell, J. Han, M. Meyyappan: J. Phys. Chem. B 106, 5629 (2002)CrossRefGoogle Scholar
  12. 12.
    K. Jiang, Q. Li, S. Fan: Nature 419, 801 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    G. Eres, A.A. Puretzky, D.B. Geohegan, H. Cui: Appl. Phys. Lett. 84, 1759 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    L. Delzeit, B. Chen, A. Cassell, R. Stevens, C.V. Nguyen, M. Meyyappan: Chem. Phys. Lett. 348, 368 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    H. Cui, G. Eres, J.Y. Howe, A. Puretzky, M. Varela, D.B. Geohegan, D.H. Lowndes: Chem. Phys. Lett. 374, 222 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    K. Ujihara: J. Appl. Phys. 43, 2376 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, E.J. Mittemeijer: J. Appl. Phys. 92, 1649 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    ‘The Standard Enthalpy of Formation of Al2O3 (Corundum) is -1675.7±1.3 kJ/mol’. In: Handbook of Chemistry and Physics, 77th edn., ed. by D.R. Lide (CRC, Boca Raton, New York, London, Tokyo 1996–1997) p. 5-1Google Scholar
  19. 19.
    Constitution of Binary Alloys, 2nd edn. (Metall. Metall. Eng. Ser.), ed. by M. Hansen (McGraw-Hill, New York, Toronto, London 1958) pp. 132–134Google Scholar
  20. 20.
    Q. Jiang, H.Y. Tong, D.T. Hsu, K. Okuyama, F.G. Shi: Thin Solid Films 312, 357 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    M. Zhang, M.Yu. Efremov, F. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Lai, T. Wisleder, J.E. Greene, L.H. Allen: Phys. Rev. B 62, 10548 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    T. de los Arcos, Z.M. Wu, P. Oelhafen: Chem. Phys. Lett. 380, 419 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    W. Theiss: Surf. Sci. Rep. 29, 91 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    G.E. Jellison, Jr., F.A. Modine: J. Appl. Phys. 76, 3758 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    E.A. Rohlfing: J. Chem. Phys. 118, 7622 (2003)CrossRefGoogle Scholar
  26. 26.
    R.T.K. Baker, P.S. Harris: in Chemistry and Physics of Carbon, Vol. 14, ed. by P.L. Walker, Jr., P.A. Thrower (Marcel Dekker, New York, Basel 1978) p. 102Google Scholar
  27. 27.
    R.T.K. Baker, M.A. Barber, P.S. Barber, P.S. Harris, F.S. Feates, R.J. Waite: J. Catal. 26, 51 (1972)CrossRefGoogle Scholar
  28. 28.
    H. Kanzow, A. Schmalz, A. Ding: Chem. Phys. Lett. 295, 525 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    O.A. Louchev, T. Laude, Y. Sato, H. Kanda: J. Chem. Phys. 118, 7622 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    O.A. Louchev, T. Laude, Y. Sato, H. Kanda: Phys. Rev. E 66, 011 601 (2002)CrossRefGoogle Scholar
  31. 31.
    W.H. Hung, S.L. Bernasek: Surf. Sci. 339, 272 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    G.D. Lee, S. Han, J. Yu, J. Ihm: Phys. Rev. B 66, 081 403-1 (2002)Google Scholar
  33. 33.
    O.A. Louchev, Y. Sato, H. Kanda: Appl. Phys. Lett. 80, 2752 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    F. Ding, K. Bolton, A. Rosen: J. Vac. Sci. Technol. A 22, 1471 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    K. Hata, D.N. Futuba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Science 306, 1362 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    T. Tanzawa, W.C. Gardiner, Jr.: J. Phys. Chem. 84, 236 (1980)CrossRefGoogle Scholar
  37. 37.
    M. Frenklach, S. Taki, M.B. Durgaprasad, R.A. Matula: Combust. Flame 54, 81 (1983)CrossRefGoogle Scholar
  38. 38.
    D.B. Geohegan, A.A. Puretzky, G. Eres, I.N. Ivanov: to be publishedGoogle Scholar
  39. 39.
    H.M. Christen, A.A. Puretzky, H. Cui, K. Belay, P.H. Fleming, D.B. Geohegan, D.H. Lowndes: Nanoletters 4, 1939 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A.A. Puretzky
    • 1
    • 2
  • D.B. Geohegan
    • 1
  • S. Jesse
    • 1
  • I.N. Ivanov
    • 1
    • 2
  • G. Eres
    • 1
  1. 1.Condensed Matter Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations