Applied Physics A

, Volume 81, Issue 2, pp 345–356 | Cite as

A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion

  • N.M. BulgakovaEmail author
  • R. Stoian
  • A. Rosenfeld
  • I.V. Hertel
  • W. Marine
  • E.E.B. Campbell


We present a continuum model, based on a drift-diffusion approach, aimed at describing the dynamics of electronic excitation, heating, and charge-carrier transport in different materials (metals, semiconductors, and dielectrics) under femtosecond and nanosecond pulsed laser irradiation. The laser-induced charging of the targets is investigated at laser intensities above the material removal threshold. It is demonstrated that, for near-infrared femtosecond irradiation, charging of dielectric surfaces causes a sub-picosecond electrostatic rupture of the superficial layers, alternatively called Coulomb explosion (CE), while this effect is strongly inhibited for metals and semiconductors as a consequence of superior carrier transport properties. On the other hand, application of the model to UV nanosecond pulsed laser interaction with bulk silicon has pointed out the possibility of Coulomb explosion in semiconductors. For such regimes a simple analytical theory for the threshold laser fluence of CE has been developed, showing results in agreement with the experimental observations. Various related aspects concerning the possibility of CE depending on different irradiation parameters (fluence, wavelength and pulse duration) and material properties are discussed. This includes the temporal and spatial dynamics of charge-carrier generation in non-metallic targets and evolution of the reflection and absorption characteristics.


Laser Fluence Dielectric Surface Pulse Laser Irradiation Bulk Silicon Nanosecond Pulse Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin, Heidelberg 2000)Google Scholar
  2. 2.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann: Appl. Phys. A 63, 109 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    J. Meijer, K. Du, A. Gillner, D. Hoffman, V.S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, W. Shulz: Annals of the CIRP 51, 531 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    B. Rethfeld, K. Sokolowski–Tinten, D. von der Linde, S.I. Anisimov: Appl. Phys. A (2004) (in press)Google Scholar
  5. 5.
    M.I. Kaganov, I.M. Lifshitz., M.V. Tanatarov: Sov. Phys. JETP 4, 173 (1957)Google Scholar
  6. 6.
    S.I. Anisimov, B. Kapeliovich, T.L. Perel’man: Sov. Phys. JETP 39, 375 (1974)ADSGoogle Scholar
  7. 7.
    S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias: Appl. Phys. A 69, 99 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    V.P. Skripov: Metastable Liquids (Halsted Press, New York 1974)Google Scholar
  9. 9.
    R. Kelly, A. Miotello: Nucl. Instrum. Methods Phys. Res., Sect. B 122, 374 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    N.M. Bulgakova, A.V. Bulgakov: Appl. Phys. A 73, 199 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    N.M. Bulgakova, I.M. Bourakov: Appl. Surf. Sci. 197198, 41 (2002)Google Scholar
  12. 12.
    L.V. Zhigelei: Appl. Phys. A 76, 339 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Pakhomov, M.S. Thompson, D.A. Gregory: J. Phys. D: Appl. Phys. 36, 2067 (2003)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Kanasaki, K. Tanimura: Phys. Rev. B 66, 125320 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    A.V. Bulgakov, I. Ozerov, W. Marine: Thin Solid Films 453454, 557 (2004)Google Scholar
  16. 16.
    R. Stoian, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell: Phys. Rev. Lett. 88, 097603 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell: Phys. Rev. B 62, 13167 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    M. Henyk, F. Costache, J. Reif: Appl. Surf. Sci. 186, 381 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell: Phys. Rev. B 69, 054102 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    N. Itoh, A.M. Stoneham: Radiat. Eff. Defect. Solids 155, 277 (2001)CrossRefGoogle Scholar
  21. 21.
    M. Borghesi, L. Romagnani, A. Schiavi, D. H. Campbell, M.G. Haines, O. Willi, A.J. Mackinnon, M. Galimberti, L. Gizzi, R.J. Clarke, S. Hawkes: Appl. Phys. Lett. 82, 1529 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    W. Marine, N.M. Bulgakova, L. Patrone, I. Ozerov: Appl. Phys. A 79, 771 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    G. Petite, P. Daguzan, S. Guizard, P. Martin: Nucl. Nucl. Instrum. Methods Phys. Res., Sect. B 107, 97 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    M. Li, S. Menon, J.P. Nibarger, G.N. Gibson: Phys. Rev. Lett. 82, 2394 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, E.E.B. Campbell: Appl. Phys. Lett. 80, 353 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    H.M. van Driel: Phys. Rev. B 35, 8166 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    K. Sokolowski-Tinten, D. von der Linde: Phys. Rev. B 61, 2643 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    S. De Unamuno, E. Fogarassy: Appl. Surf. Sci. 36, 1 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    S.S. Mao, X.L. Mao, R. Greif, R.E. Russo: Appl. Surf. Sci. 127129, 206 (1998)Google Scholar
  30. 30.
    E.J. Yoffa: Phys. Rev. B 21, 2415 (1980)ADSCrossRefGoogle Scholar
  31. 31.
    T. Held, T. Kuhn, G. Marler: Phys. Rev. B 44, 12873 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    A. Melchinger, S. Hofmann: J. Appl. Phys. 78, 6224 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    A. Miotello, M. Dapor: Phys. Rev. B 56, 2241 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    R.M. Ribeiro, M.M.D. Ramos, A.M. Stoneham, J.M. Correia Pires: Appl. Surf. Sci. 109110, 158 (1997)Google Scholar
  35. 35.
    R.M. Ribeiro, M.M.D. Ramos, A.M. Stoneham: Thermophysics and Aeromechanics 5, 223 (1998)Google Scholar
  36. 36.
    S. Nolte, B.N. Chichkov, H. Welling, Y. Shani, K. Lieberman, H. Terkel: Opt. Lett. 24, 914 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    S.P. Zvavyi, G.D. Ivlev: Inzh.-Fiz. Zh. 69, 790 (1996) (in Russian)Google Scholar
  38. 38.
    E.M. Logothetis, P. L. Hartman, Phys. Rev. 187, 460 (1969)Google Scholar
  39. 39.
    J.H. Bechtel, W. Lee Smith, N. Bloembergen: Phys. Rev. B 15, 4557 (1977)ADSCrossRefGoogle Scholar
  40. 40.
    G.V. Samsonov (ed.): Physicochemical Properties of the Elements (Naukova Dumka, Kiev 1965) (in Russian)Google Scholar
  41. 41.
    I.S. Grigoryev, E.Z. Meilikhov, A.A. Radzig (Eds.): Handbook of Physical Quantities (CRC Press, Boca Raton 1996)Google Scholar
  42. 42.
    V.M. Zolotarev, V.N. Morozov, E.V. Smirnova: Optical Constants for Natural and Technical Media (Khimiya, Leningrad 1984) (in Russian)Google Scholar
  43. 43.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry: Phys. Rev. B 53, 1749 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    D. Arnold, E. Cartier: Phys. Rev. B 46, 15102 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    D. Ashkenasi, R. Stoian, A. Rosenfeld: Appl. Surf. Sci. 154155, 40 (2000)Google Scholar
  46. 46.
    F. Quèrè, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, M. Perdrix: Appl. Phys. B 68, 459 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    W.G. Driscoll, W. Vaughan (Eds.): Handbook of Optics (McGraw-Hill Book Company, New York 1978)Google Scholar
  48. 48.
    M.C. Downer, C.V. Shank: Phys. Rev. Lett. 56, 761 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    D. von der Linde, H. Schüller: J. Opt. Soc. Am. B 13, 216 (1996)ADSCrossRefGoogle Scholar
  50. 50.
    S.C. Jones, A.H. Fischer, P. Braunlich, P. Kelly: Phys. Rev. B 37, 755 (1988)ADSCrossRefGoogle Scholar
  51. 51.
    W.J. Siekhaus, J.H. Kinney, D. Milam, L.L. Chase: Appl. Phys. A 39, 163 (1986)ADSCrossRefGoogle Scholar
  52. 52.
    R.C. Hughes: Phys. Rev. B 19, 5318 (1979)ADSCrossRefGoogle Scholar
  53. 53.
    L. Ward: The Optical constants of bulk materials and films (Institute of Physics Publishing, Bristol 1994)Google Scholar
  54. 54.
    T.Y. Choi, C.P. Grigoropoulos: J. Appl. Phys. 92, 4918 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    T. Sjodin, H. Petek, H-L. Dai: Phys. Rev. Lett. 81, 5664 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    J. Bok, M. Combescot: Phys. Rev. Lett. 47, 1564 (1981)ADSCrossRefGoogle Scholar
  57. 57.
    R.E. Hummel: Electronic Properties of Materials (Springer, Berlin, Heidelberg 1993)Google Scholar
  58. 58.
    T. Kuhn, G. Mahler: Solid-State Electron. 32, 1851 (1989)ADSCrossRefGoogle Scholar
  59. 59.
    E.O. Kane: Phys. Rev. 127, 131 (1962)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    J. G. Mihaychuk, N. Shamir, H.M. van Driel: Phys. Rev. B 59, 2164 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    G.W. Gobelli, F.G. Allen: Phys. Rev. 127, 141 (1962)ADSCrossRefGoogle Scholar
  62. 62.
    M.E. Drits (ed.): Properties of Elements: Handbook (Moscow, Metallurgiya 1985) (in Russian)Google Scholar
  63. 63.
    C. Sebenne, D. Bolmont, G.Guichar, M. Balkanski: Phys. Rev. B 12, 3280 (1975)ADSCrossRefGoogle Scholar
  64. 64.
    A. Cavalleri, C.W. Siders, C. Rose-Petruck, R. Jimenez, C. Toth, J.A. Squier, C.P.J. Barty, K.R. Wilson, K. Sokolowski-Tinten, M.N. von Hoegen, D. von der Linde: Phys. Rev. E 63, 193306 (2001)ADSCrossRefGoogle Scholar
  65. 65.
    A. Othonos: J. Appl. Phys. 83, 1789 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    W.G. Roeterdink, L.B.F. Juurlink, O.P.H. Vaughan, J. Dura Diez, M. Bonn, A.W. Kleyn: Appl. Phys. Lett. 82, 4190 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    W.E. Spicer, R.E. Simon: Phys. Rev. Lett. 9, 385 (1962)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • N.M. Bulgakova
    • 1
    Email author
  • R. Stoian
    • 2
    • 3
  • A. Rosenfeld
    • 2
  • I.V. Hertel
    • 2
  • W. Marine
    • 4
  • E.E.B. Campbell
    • 5
  1. 1.Institute of Thermophysics SB RASNovosibirskRussia
  2. 2.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany
  3. 3.Laboratoire TSI (UMR 5516 CNRS)Universite Jean MonnetSaint EtienneFrance
  4. 4.Centre de Recherche en Matière Condensée et Nanosciences, UPR 7251 CNRSUniversité de la MéditerranéeMarseille Cedex 9France
  5. 5.Department of Experimental PhysicsGöteborg UniversityGöteborgSweden

Personalised recommendations