Applied Physics A

, Volume 81, Issue 7, pp 1465–1469 | Cite as

Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation

  • J. Olivares
  • G. García
  • F. Agulló-López
  • F. Agulló-Rueda
  • A. Kling
  • J.C. Soares


The refractive-index profiles induced by high-energy (5 MeV, 7.5 MeV) silicon irradiation in LiNbO3 have been systematically determined as a function of ion fluence in the range 1013–1015 cm-2. At variance with irradiations at lower energies, an optically isotropic (‘amorphous’) homogeneous surface layer is generated whose thickness increases with fluence. These results have been associated with an electronic excitation mechanism. They are discussed in relation to the well-documented phenomenon of latent (amorphous) track generation under ion irradiation, requiring a threshold value Se,th for the electronic stopping power Se. Our optical data have yielded a value of ≈5 keV/nm for such a threshold, within the range reported by independent single-track measurements. The propagation of the amorphous boundary into the crystal during irradiation indicates that the threshold value decreases on increasing the fluence. Complementary Rutherford backscattering–channeling and micro-Raman (on samples irradiated at 30 MeV) experiments have been performed to monitor the induced structural changes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.D. Townsend, P.J. Chandler, L. Zhang: Optical Effects of Ion Implantation (Cambridge University Press, 1994)Google Scholar
  2. 2.
    C. Buchal, S.P. Withrow, C.W. White, D.B. Poker: Annu. Rev. Mater. Sci. 24, 125 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Properties of Lithium Niobate (EMIS Datarev. Ser. 5) (INSPEC, Exeter, 2004)Google Scholar
  4. 4.
    H. Lu, F. Lu, F. Chen, B.R. Shi, K.M. Wang, D.Y. Shen: J. Appl. Phys. 89, 5224 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    G.G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, R. Guzzi: J. Appl. Phys. 92, 6477 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    C.G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, R. Guzzi: J. Appl. Phys. 96, 242 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    G. Fu, K.M. Wang, F. Chen, X.L. Wang, S.L. Li, D.Y. Shen, H.J. Ma, R. Nie: Nucl. Instrum. Methods Phys. Res. B 211, 346 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    S. Ling: Opt. Express 12, 747 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    R.L. Fleischer, P.B. Price, R.M. Walker: Nuclear Tracks in Solids (University of California Press, Berkeley, 1975)Google Scholar
  10. 10.
    R. Spohr: in Ion Tracks, Microtechnology: Basic Principles and Applications, ed. by K. Bethge (Vieweg, Braunschweig, 1990)Google Scholar
  11. 11.
    M. Toulemonde, C. Dufour, E. Paumier: Phys. Rev. B 46, 14 362 (1992)CrossRefGoogle Scholar
  12. 12.
    G. Szenes: Phys. Rev. B 51, 8026 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    M. Toulemonde, C. Dufour, Z.G. Wang, E. Paumier: Nucl. Instrum. Methods B 112, 26 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    D.J.W. Mous, A. Gottdang, R.G. Haitsma, G. García López, A. Climent-Font, F. Agulló-López, D.O. Boerma: Proc. CAARI 680(1), 999 (2002)Google Scholar
  15. 15.
    R. Ulrich, R. Torge: Appl. Opt. 12, 2901 (1973)ADSCrossRefGoogle Scholar
  16. 16.
    J. Olivares, M.A. Díaz-García, J.M. Cabrera: Opt. Commun. 92, 40 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    G.L. Destefanis, G.P. Gailliard, E.L. Ligeon, S. Valette, B.W. Farmery, P.D. Townsend, A. Perez: J. Appl. Phys. 50, 7898 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    S.H. Kim, S.J. Lee, J.P. Kim, B.G. Chae, Y.S. Yang, M.S. Jang: J. Korean Phys. Soc. 32, S830 (1998)Google Scholar
  19. 19.
    B. Canut, S.M.M. Ramos: Radiat. Eff. Defects Solids 145, 1 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    M. Toulemonde, C. Dufour, A. Meftah, E. Paumier: Nucl. Instrum. Methods B 166167, 903 (2000)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. Olivares
    • 1
    • 3
  • G. García
    • 3
  • F. Agulló-López
    • 2
    • 3
  • F. Agulló-Rueda
    • 4
  • A. Kling
    • 5
  • J.C. Soares
    • 6
  1. 1.CSICInstituto de Optica ‘Daza de Valdés’MadridSpain
  2. 2.Departamento de Física de Materiales, C-IVUniversidad Autónoma de MadridMadridSpain
  3. 3.Centro de Microanálisis de Materiales CMAM-UAMParque Científico de Madrid, CantoblancoMadridSpain
  4. 4.Instituto de Ciencia de Materiales de Madrid (CSIC)MadridSpain
  5. 5.Instituto Tecnologico e Nuclear (ITN)SacavemPortugal
  6. 6.Centro de Física da Universidade de Lisboa (CFNUL)LisboaPortugal

Personalised recommendations