Applied Physics A

, Volume 81, Issue 2, pp 329–338 | Cite as

Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin



We investigated the mechanisms of material ejection in Q-switched Er:YAG laser tissue ablation (70-ns pulse duration) where moderate and large radiant exposures are associated with large volumetric energy densities in the target material. For water, an initial phase of non-equilibrium surface vaporization is followed by an explosive vaporization of the superficial liquid volume from a supercritical state. The ablation of deeper layers with lower peak temperatures proceeds as phase explosion. For mechanically strong tissues, non-equilibrium surface vaporization is followed by a vapour explosion coupled with thermal dissociation of the biomolecules into volatile products. In deeper layers, ablation proceeds as confined boiling with mechanical tearing of the tissue matrix by the vapour pressure. The recoil stress induced at a radiant exposure of 5.4 J/cm2 is in the order of 500–900 MPa. For water and soft tissues such as liver, the recoil causes a powerful secondary material expulsion. For stronger tissues such as skin, no secondary expulsion was observed even though the recoil stress largely exceeds the static tensile strength of the tissue. Recoil-induced material expulsion results in an increase of both ablation efficiency and mechanical side effects of ablation. Theoretical modelling of the succession of phase transitions in nanosecond-laser tissue ablation and of recoil-induced material expulsion remain a major challenge for future work.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)Google Scholar
  2. 2.
    A. Vogel, V. Venugopalan, Proc. SPIE 4961, 66 (2003)Google Scholar
  3. 3.
    A. Vogel, B. Kersten, I. Apitz, Proc. SPIE 4961, 40 (2003)Google Scholar
  4. 4.
    K. Nahen, A. Vogel, Lasers Surg. Med. 25, 69 (1999)Google Scholar
  5. 5.
    K. Nahen, A. Vogel, J. Biomed. Opt. 7, 165 (2002)Google Scholar
  6. 6.
    E. Hecht. A. Zajac, Optics (Addison-Wesley, Reading, MA, 1977)Google Scholar
  7. 7.
    V.P. Skripov, E.N. Sinitsyn, P.A. Pavlov, G.V. Ermakov, G.N. Muratov, N.V. Bulanov, V.G. Baidakov, Thermophysical Properties of Liquids in the Metastable (Superheated) State (Gordon and Breach Science, New York, 1988)Google Scholar
  8. 8.
    L.V. Zhigilei, Appl. Phys. A 76, 339 (2003)Google Scholar
  9. 9.
    J.T. Walsh, T.F. Deutsch, Appl. Phys. B 52, 217 (1991)Google Scholar
  10. 10.
    L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003)Google Scholar
  11. 11.
    A.D. Yablon, N.S. Nishioka, B.B. Mikić, V. Venogopalon: Proc. SPIE 3343, 69 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Q. Lu, Phys. Rev. E 67, 016410 (2003)Google Scholar
  13. 13.
    V. Venugopalan, N.S. Nishioka, B.B. Mikic, Biophys. J. 70, 2981 (1996)Google Scholar
  14. 14.
    N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A 69, S87 (1999)Google Scholar
  15. 15.
    H.L. Brode, Phys. Fluids 2, 217 (1959)Google Scholar
  16. 16.
    J.P. Cummings, J.T. Walsh, Proc. SPIE 1646, 242 (1992)Google Scholar
  17. 17.
    A.D. Zweig, H.P. Weber, IEEE J. Quantum Electron. QE-23, 1787 (1987)Google Scholar
  18. 18.
    M. Frenz, V. Romano, A.D. Zweig, H.P. Weber, N.I. Chapliev, A.V. Silenok, J. Appl. Phys. 66, 4496 (1989)Google Scholar
  19. 19.
    A.D. Zweig, J. Appl. Phys. 70, 1684 (1991)Google Scholar
  20. 20.
    O.G. Engel, J. Appl. Phys. 37, 1798 (1966)Google Scholar
  21. 21.
    A. Prosperetti, H.N. Oguz, Annu. Rev. Fluid Mech. 25, 577 (1993)Google Scholar
  22. 22.
    F.P. Bowden, J.H. Brunton, Proc. R. Soc. Lond. A 263, 433 (1961)Google Scholar
  23. 23.
    C.L. Mader, M.L. Gittings, Sci. Tsunami Hazards 21, 91 (2003)Google Scholar
  24. 24.
    L.D. Landau, E.M. Lifschitz, Hydrodynamik (Akademie, Berlin, 1991), x89Google Scholar
  25. 25.
    A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)Google Scholar
  26. 26.
    G.E. Duvall, G.R. Fowles, Shock Waves. In High Pressure Physics and Chemistry, ed. by R.S. Bradley (Academic, New York, 1963), pp. 209–291Google Scholar
  27. 27.
    M.H. Rice, J.M. Walsh, J. Chem. Phys. 26, 824 (1957)Google Scholar
  28. 28.
    F. Könz, M. Frenz, H. Pratisto, H.P. Weber, H. Lubatschowski, O. Kermani, W. Ertmer, H.J. Altermatt, T. Schaffner, Proc. SPIE 2077, 78 (1994)Google Scholar
  29. 29.
    F.A. Duck, Physical Properties of Tissue (Academic, London, 1990)Google Scholar
  30. 30.
    F.H. Silver, Biological Materials: Structure, Mechanical Properties, and Modeling of Soft Tissue (New York University Press, New York and London, 1987)Google Scholar
  31. 31.
    R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990)Google Scholar
  32. 32.
    S. Watanabe, T.J. Flotte, D.J. McAucliffe, S.L. Jacques, J. Invest. Dermatol. 90, 761 (1988)Google Scholar
  33. 33.
    J.T. Walsh, T.F. Deutsch, IEEE Trans. Biomed. Eng. 36, 1195 (1989)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für Biomedizinische OptikUniversität zu LübeckLübeckGermany

Personalised recommendations