Applied Physics A

, Volume 80, Issue 8, pp 1625–1629 | Cite as

Size dependence of mechanical properties of gold at the sub-micron scale

Invited paper

Abstract

The results of both experimental studies and molecular dynamics simulations indicate that crystals exhibit strong size effects at the sub-micron scale. In experimental studies, the size effects are usually explained by strain gradients. By contrast, atomistic simulations suggest that the yield strength depends on the size even without strain gradients and scales with the sample size through a power relationship. Here we address these two different approaches to the size dependence of mechanical properties. Results of uniaxial compression experiments on gold single crystals at the sub-micron scale, without significant stress/strain gradients, are presented. The free-standing single-crystal Au cylinders are created by focused ion beam machining and are subsequently compressed using a nanoindenter fitted with a diamond flat punch. Compressive stresses and strains, as well as pillar stiffnesses, are determined from the test data. The experiments show that the flow stresses of these pillars increase significantly with decreasing pillar diameter, reaching several GPa for the smallest pillars. These high strengths appear to be controlled by dislocation starvation, which is unique to small crystals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson: Acta Metall. Mater. 42, 475 (1994)CrossRefGoogle Scholar
  2. 2.
    J.S. Stolken, A.G. Evans: Acta Mater. 46, 5109 (1998)CrossRefGoogle Scholar
  3. 3.
    N.A. Stelmashenko, M.G. Walls, L.M. Brown, Y.V. Millman: Acta Metall. Mater. 41, 2855 (1993)CrossRefGoogle Scholar
  4. 4.
    M.S. De Guzman, G. Neubauer, P. Flinn, W.D. Nix: Mater. Res. Symp. Proc. 308, 613 (1993)Google Scholar
  5. 5.
    M. Atkinson: J. Mater. Res. 10, 2908 (1995)Google Scholar
  6. 6.
    Q. Ma, D.R. Clarke: J. Mater. Res. 10, 853 (1995)Google Scholar
  7. 7.
    W.J. Poole, M.F. Ashby, N.A. Fleck: Scr. Metall. Mater. 34, 559 (1996)Google Scholar
  8. 8.
    K.W. McElhaney, J.J. Vlassak, W.D. Nix: J. Mater. Res. 13, 1300 (1998)Google Scholar
  9. 9.
    S. Suresh, T.G. Nieh, B.W. Choi: Scr. Mater. 41, 951 (1999)CrossRefGoogle Scholar
  10. 10.
    W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeyer, M.I. Baskes: J. Appl. Mech. (Trans. ASME) 69, 433 (2002)CrossRefGoogle Scholar
  11. 11.
    W.D. Nix, H. Gao: J. Mech. Phys. Solids 46, 411 (1998)CrossRefGoogle Scholar
  12. 12.
    M.F. Ashby: Philos. Mag. 21, 399 (1970)Google Scholar
  13. 13.
    H. Gao, Y. Huang, W.D. Nix: Naturwissenschaftlen 86, 507 (1999)CrossRefGoogle Scholar
  14. 14.
    H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson: J. Mech. Phys. Solids 47, 1239 (1999)CrossRefGoogle Scholar
  15. 15.
    Y. Huang, H. Gao, W.D. Nix, J.W. Hutchinson: J. Mech. Phys. Solids 48, 99 (2000)CrossRefGoogle Scholar
  16. 16.
    Y. Huang, Z. Xue, H. Gao, W.D. Nix, Z.C. Xia: J. Mater. Res. 15, 1786 (2000)Google Scholar
  17. 17.
    Y. Huang, J.Y. Chen, T.F. Guo, L. Zhang, K.C. Hwang: Int. J. Fract. 100, 1 (1999)CrossRefGoogle Scholar
  18. 18.
    J.B. Pethica, W.C. Oliver: Proc. Mater. Res. Soc. 13 (1988)Google Scholar
  19. 19.
    T.F. Page, W.C. Oliver, C.J. McHargue: J. Mater. Res. 7, 450 (1992)Google Scholar
  20. 20.
    W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, J.T. Wyrobek: Acta Mater. 44, 3585 (1996)CrossRefGoogle Scholar
  21. 21.
    A.B. Mann, J.B. Pethica: Proc. Mater. Res. Soc. 153 (1996)Google Scholar
  22. 22.
    S.G. Corcoran, R.J. Colton, E.T. Lilleodden, W.W. Gerberich: Phys. Rev. B 55, 16 057 (1997)CrossRefGoogle Scholar
  23. 23.
    J.D. Kiely, K.F. Jarauch, J.E. Houston, P.E. Russell: J. Mater. Res. 15, 1693 (2000)Google Scholar
  24. 24.
    S. Suresh, T.G. Nieh, B.W. Choi: Scr. Mater. 41, 951 (1999)CrossRefGoogle Scholar
  25. 25.
    M.F. Horstemeyer, M.I. Baskes, S.J. Plimpton: Acta Mater. 49, 4363 (2001)CrossRefGoogle Scholar
  26. 26.
    M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix: Science 305, 986 (2004)CrossRefPubMedGoogle Scholar
  27. 27.
    J.R. Greer, W.C. Oliver, W.D. Nix: Acta Mater. 53, 1821 (2005)CrossRefGoogle Scholar
  28. 28.
    E.M. Savitskii, A. Prince: Handbook of Precious Metals (1969) p. 128Google Scholar
  29. 29.
    B. Arnold, Lohse, H.D. Bauer, T. Gemming, K. Wetzig, K. Binder: Microsc. Microanal. 9, 140 (2003)Google Scholar
  30. 30.
    F. Machalett, K. Edinger, J. Melngailis, M. Diegel, K. Steenbeck, E. Steinbeiss: Appl. Phys. A 71, 331 (2000)Google Scholar
  31. 31.
    J.J. Gilman: Appl. Micromechan. Flow Solids 185 (1953)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations