Applied Physics A

, Volume 80, Issue 7, pp 1413–1417 | Cite as

GaS multi-walled nanotubes from the lamellar precursor

Rapid communication


Inorganic fullerene-like (IF) nanotubes constructed from layered metal chalcogenides are of particular significance because of their excellent physical properties and potential application in wide fields. But very few previous studies were focused on the IF nanotubes of layered III-VI semiconductor. Therefore we investigate the preparation, structure and photoluminescence (PL) properties of GaS nanotube (an important III-VI semiconductor IF nanotube). A simple method is introduced to prepare GaS multi-walled nanotubes for the first time by annealing the natural lamellar precursor in Ar. The reaction temperature is crucial for the formation of nanotube. A suitable temperature range is 500–850 °C. Bulk quantities of GaS nanotubes with diameters of 30–150 nm and lengths up to ten micrometers were produced. Some of these nanotubes show corrugated and interlinked structure and form many segments, demonstrating a bamboo-like structure. As compared to bulk materials, the obvious distinction of the products in PL spectra at liquid nitrogen temperature of 77 K was due to the structure variety.


Reaction Temperature Structure Variety Bulk Material Layered Metal Liquid Nitrogen Temperature 
These keywords were added by machine and not by the authors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Iijima: Nature 354, 56 (1991)CrossRefGoogle Scholar
  2. 2.
    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl: Science 269, 966 (1995)Google Scholar
  3. 3.
    Y.R. Hacohen, E. Grunbaum, R. Tenne, J. Sloan, J.L. Huntchison: Nature 395, 336 (1998); R.P. Bire, A. Twersky, Y.R. Hacohen, R. Tenne: Isr. J. Chem. 41, 7 (2001); A.S. Mastai, A.Y. Gedanken: J. Am. Chem. Soc. 122, 4331 (2000)CrossRefGoogle Scholar
  4. 4.
    R. Tenne, L. Margulis, M. Genut, G. Hodes: Nature 360, 444 (1992); Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne: Science 267, 222 (1995); M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, D. Mihailovic: Science 292, 479 (2001); M. Nath, C.N.R. Rao: J. Am. Chem. Soc. 123, 4841 (2001); M. Brorson, T.W. Hansen, C.J.H. Jacobsen: J. Am. Chem. Soc. 124, 11582 (2002); C. Ye, G. Meng, Z. Jiang, Y. Wang, G. Wang, L. Zhang: J. Am. Chem. Soc. 124, 15180 (2002)CrossRefGoogle Scholar
  5. 5.
    P. Hoyer: Adv. Mater. 8, 857 (1996); H.J. Muhr, F. Krumeich, U.P. Schonholzer, F. Bieri, M. Gauckler, L.J. Gauckler, R. Nesper: Adv. Mater. 12, 231 (2000)CrossRefGoogle Scholar
  6. 6.
    J. Chen, N. Kuriyama, H. Yuan, H.T. Takeshita, T. Sakai: J. Am. Chem. Soc. 123, 11813 (2001); J. Chen, S.L. Li, Z. Tao, Y. Shen, C.X. Cui: J. Am. Chem. Soc. 125, 5284 (2003)CrossRefGoogle Scholar
  7. 7.
    J. Chen, S.L. Li, Q. Xu, K. Tanaka: Chem. Comm. 1722 (2002)Google Scholar
  8. 8.
    E. Ruiz-Hitzky, R. Jimenez, B. Casal, V. Manriquez, A.S. Ana, G. Gonzalez: Adv. Mater. 5, 738 (1993)CrossRefGoogle Scholar
  9. 9.
    M. Homyonfer, B. Alperson, Y. Rosenberg, L. Sapir, S.R. Cohen, G. Hodes, R. Tenne: J. Am. Chem. Soc. 119, 2693 (1997); L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, R. Tenne: Nature 387, 791 (1997)CrossRefGoogle Scholar
  10. 10.
    Y. Feldman, G.L. Frey, M.H. Lyakhovitskaya, M.H. Cohen, G. Hodes, J.L. Hutchison, R. Tenne: J. Am. Chem. Soc. 118, 5362 (1996); A. Rothschild, J. Sloan, R. Tenne: J. Am. Chem. Soc. 122, 5169 (2000); M. Nath, C.N.R. Rao: Chem. Comm. 2236 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Remskar, Z. Skraba, M. Regula, C. Ballif, R. Sanjines, F. Levy: Adv. Mater. 10, 246 (1998)CrossRefGoogle Scholar
  12. 12.
    C.M. Zelenski, P.K. Dorhout: J. Am. Chem. Soc. 120, 734 (1998)CrossRefGoogle Scholar
  13. 13.
    Y.Q. Zhu, W.K. Hsu, N. Grobert, B.H. Chang, M. Terrones, H. Terrones, H.W. Kroto, D.R.M. Walton, Q. Wei: Chem. Mater. 12, 1190 (2000)CrossRefGoogle Scholar
  14. 14.
    A.J. Hollingsworth, D.M. Poojary, A. Clearfield, W.E. Buhro: J. Am. Chem. Soc. 122, 3562 (2000)CrossRefGoogle Scholar
  15. 15.
    M. Genut, L. Margulis, G. Hodes, R. Tenne: Thin Solid Films 217, 97 (1992)CrossRefGoogle Scholar
  16. 16.
    E. Aulich, J.L. Brebner, E. Mooser: Phys. Status Solidi 31, 129 (1969)Google Scholar
  17. 17.
    A. Mercier, E. Mooser, J.P. Voitchovsky: J. Lumin. 7, 241 (1973)CrossRefGoogle Scholar
  18. 18.
    G. Akhundov, I.G. Aksyanov, G.M. Gasumov: Sov. Phys. Semicond. 3, 767 (1969); M.I. Karaman, V.P. Mushinskii: Sov. Phys. Semicond. 4, 662 (1970); A. Cingolani, A. Minafra, P. Tantalo, C. Paorici: Phys. Status Solidi A 4, 83 (1971)Google Scholar
  19. 19.
    D. Ugarte: Nature 359, 707 (1992)Google Scholar
  20. 20.
    J. Moser, H.J. Liao, F. Lèvy: J. Phys. D. Appl. Cryst. 23, 624 (1990)CrossRefGoogle Scholar
  21. 21.
    M.J. Yacamàn, H. Lòpez, P. Santiago, D.H. Galvàn, I.L. Garzòn, A. Reyes: Appl. Phys. Lett. 69, 1065 (1996)CrossRefGoogle Scholar
  22. 22.
    Y.D. Li, X.L. Li, R. He, J. Zhu, Z.X. Deng: J. Am. Chem. Soc. 124, 1411 (2002)CrossRefGoogle Scholar
  23. 23.
    L.Q. Zhang, B.W. Shen, J.Z. Yun, X.Z. Cao, Y.Y. Lv: Series on Inorg. Chem., (Science Press, Beijing 1984)Google Scholar
  24. 24.
    Y.R. Hacohen, E. Grunbaum, R. Tenne, J. Sloan, J.L. Huntchison: Nature 395, 336 (1998); A.S. Mastai, A.Y. Gedanken: J. Am. Chem. Soc. 122, 4331 (2000)CrossRefGoogle Scholar
  25. 25.
    W.Z. Li, J.G. Wen, Z.F. Ren: Appl. Phys. A 74, 397 (2002); L. Bourgeois, Y. Bando, T. Sato: J. Phys. D. Appl. Phys. 33, 1902 (2000); W.Q. Han, P.K. Redlich, T. Seeger, F. Ernst, N. Grobert, W.K. Hsu, B. Chang, Y.Q. Zhu, H.W. Kroto, D.R.M. Walton, M. Terrones, H. Terrones: Appl. Phys. Lett. 77, 1807 (2000)CrossRefGoogle Scholar
  26. 26.
    M. Nath, A. Govindaraj, C.N.R. Rao: Adv. Mater. 13, 283 (2001)CrossRefGoogle Scholar
  27. 27.
    F.C. Aragon, J.M. Cowly: Acta Cryst. 16, 531 (1963)CrossRefGoogle Scholar
  28. 28.
    A. Mercier, J.P. Voitchovsky: J. Phys. Chem. Solids 36, 1411 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Organic Solids Laboratory, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations