Applied Physics A

, Volume 80, Issue 6, pp 1179–1182

Quantum dot photonic devices for lightwave communication



For InAs-GaAs based quantum dot lasers emitting at 1300 nm digital modulation showing an open eye pattern up to 12 Gb/s at room temperature is demonstrated, at 10 Gb/s the bit error rate is below 10-12 at -2 dBm receiver power. Cut-off frequencies up to 20 GHz are realised for lasers emitting at 1.1 μm. Passively mode-locked QD lasers generate optical pulses with repetition frequencies between 5 and 50 GHz, with a minimum Fourier limited pulse length of 3 ps. The uncorrelated jitter is below 1 ps. We use here deeply etched narrow ridge waveguide structures which show excellent performance similar to shallow mesa structures, but a circular far field at a ridge width of 1 μm, improving coupling efficiency into fibers. No beam filamentation of the fundamental mode, low α-factors and strongly reduced sensitivity to optical feedback is observed. QD lasers are thus superior to QW lasers for any system or network.

Quantum dot semiconductor optical amplifiers (QD SOAs) demonstrate gain recovery times of 120–140 fs, 4–7 times faster than bulk/QW SOAs, and a net gain larger than 0.4 dB/(mm*QD layer) providing us with novel types of booster amplifiers and Mach–Zehnder interferometers.

These breakthroughs became possible due to systematic development of self-organized growth technologies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bimberg, M. Grundmann, N.N. Ledentsov: Quantum Dot Heterostructures (Wiley, Chichester 1998)Google Scholar
  2. 2.
    M. Grundmann (ed.): Nano-Optoelectronics (Springer, Heidelberg 2002)Google Scholar
  3. 3.
    R. Dingle, C.H. Henry: Quantum Effects in Heterostructure Lasers, U.S. Patent 3 982 207, 1976Google Scholar
  4. 4.
    P. Borri, W. Langbein, J. Mørk, J.M. Hvam, F. Heinrichsdorff, M.-H. Mao , D. Bimberg: Phys. Rev. B 60, 7784 (1999); P. Borri, W. Langbein, S. Schneider, D. Waggon, R.L. Sellin, D. Ouyang, D. Bimberg: Phys. Rev. Lett. 87, 157401 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Arakawa, H. Sakaki: Appl. Phys. Lett. 40, 939 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    M. Asada, M. Miyamoto, Y. Suematsu: IEEE J. Quantum Electron. QE-22 , 1915 (1986)Google Scholar
  7. 7.
    H. Benisty, C.M. Sotomayor-Torres, C. Weisbuch: Phys. Rev. B 44, 10945 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu: Electron. Lett. 30, 142 (1994)CrossRefGoogle Scholar
  9. 9.
    D. Bimberg et al.: Thin Solid Films 267, 32 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    V.A. Shchukin, D. Bimberg: Rev. Mod. Phys. 71, 1125 (1999); V.A. Shchukin, N.N. Ledentsov, D. Bimberg: Epitaxy of Nanostructures (Springer, Heidelberg 2003)ADSCrossRefGoogle Scholar
  11. 11.
    N. Kirstaedter et al.: Electron. Lett. 30, 1416 (1994)CrossRefGoogle Scholar
  12. 12.
    M. Grundmann, D. Bimberg: Jpn. J. Appl. Physics 36, 4181 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    O. Stier, M. Grundmann, D. Bimberg: Phys. Rev. B 59, 5688 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    D. Bimberg et al.: IEEE J. Sel. Top. Quantum Electronics 3, 196 (1997)CrossRefGoogle Scholar
  15. 15.
    N.N. Ledentsov et al.: El. Lett. 39, 1126 (2003); A.R. Kovsh et al.: El. Lett. 38, 1104 (2002)CrossRefGoogle Scholar
  16. 16.
    R. Sellin et al.: Appl. Phys. Lett. 78, 1207 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    R.L. Sellin et al.: Electron Lett. 38, 883 (2002)CrossRefGoogle Scholar
  18. 18.
    C. Ribbat et al.: Appl. Phys. Lett. 82, 952 (2003); E. Gehrig et al.: Appl. Phys. Lett. 84, 1650 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    M. Kuntz et al.: New Journal of Physics 6, 181 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    D. O’Brien et al.: Electron. Lett. 39, 1819 (2003); G. Huyet et al.: Phys. Stat. Sol. (b) 201, 345 (2004)CrossRefGoogle Scholar
  21. 21.
    C. Ribbat et al.: Electron. Lett. 37, 174 (2001)CrossRefGoogle Scholar
  22. 22.
    D. Bimberg, et al.: Phys. Stat. Sol. (b) 224, 787 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    M. Kuntz et al.: Electron. Lett., submittedGoogle Scholar
  24. 24.
    M.G. Thompson et al.: Proc. SPIE 5365, 107 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    J.A. Lott, et al.: Electron. Lett. 36, 1384 (2000); D. Bimberg, N.N. Ledentsov, J.A. Lott, MRS Bulletin July 2002, p. 531CrossRefGoogle Scholar
  26. 26.
    P. Borri et al.: IEEE J. Sel. Top. Quantum Electron. 6, 544 (2000)CrossRefGoogle Scholar
  27. 27.
    R. Mirin: Adv. Semicon. Lasers and Applications 153, 21–23 July, 1999Google Scholar
  28. 28.
    M. Sugawara et al.: Jpn. J. Appl. Phys. 40, L488 (2001)Google Scholar
  29. 29.
    M. Laemmlin et al.: OSA CLEO/IQEC Technical Digest, CThB6 (2004)Google Scholar
  30. 30.
    S. Schneider et al.: IEEE J. Quantum Electron. 40, 1423 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für Festkörperphysik and Center for NanoPhotonicsTechnische Universität BerlinBerlinGermany

Personalised recommendations