Applied Physics A

, Volume 80, Issue 6, pp 1257–1263 | Cite as

Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation

  • Z. Li
  • B. Rajendran
  • T.I. Kamins
  • X. Li
  • Y. Chen
  • R. Stanley Williams


Highly sensitive, sequence-specific and label-free DNA sensors were demonstrated by monitoring the electronic conductance of silicon nanowires (SiNWs) with chemically bonded single-stranded (ss) DNA or peptide nucleic acid (PNA) probe molecules. For a 12-mer oligonucleotide, tens of pM of target ss-DNA in solution was recognized when the complementary DNA oligonucleotide probe was attached to the SiNW surfaces. In contrast, ss-DNA samples of ×1000 concentration with a single-base mismatch produce only a weak signal due to nonspecific binding. In order to gain a physical understanding of the change in conductance of the SiNWs with the attachment of the DNA targets and the probes, process and device simulations of the two-dimensional cross sections of the SiNWs were performed. The simulations explained the width dependence of the SiNW conductance and provided understanding to improve the sensor performance.


Probe Molecule Peptide Nucleic Acid Device Fabrication Sensor Performance Silicon Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan: Adv. Mater. 15, 353 (2003)CrossRefGoogle Scholar
  2. 2.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai: Science 287, 622 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    K. Besteman, J. Lee, F. Wiertz, H. Heering, C. Deeker: Nano Lett. 3, 727 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan: Nano Lett. 3, 929 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber: Science 293, 1289 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, R.S. Williams: Nano Lett. 4, 245 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    J. Hahm, C.M. Lieber: Nano Lett. 4, 51 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M. Law, H. Kind, F. Kim, B. Messer, P. Yang: Angew. Chem. Int. Ed. 41, 2405 (2002)CrossRefGoogle Scholar
  9. 9.
    C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, C.W. Zhou: Appl. Phys. Lett. 82, 1613 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    L.A. Chrisey, G.U. Lee, E. O’Ferrall: Nucleic Acids Res. 24, 3031 (1996)CrossRefGoogle Scholar
  11. 11.
    F.N. Rehman, M. Audeh, E.S. Abrams, P.W. Hammond, M. Kenney, T.C. Boles: Nucleic Acids Res. 27, 649 (1999)CrossRefGoogle Scholar
  12. 12.
    M. Beier, J.D. Hoheisel: Nucleic Acids Res. 27, 1970 (1999)CrossRefGoogle Scholar
  13. 13.
    M.C. Homs: Anal. Lett. 35, 1875 (2002)CrossRefGoogle Scholar
  14. 14.
    E. Pavlovic, A.P. Quist, U. Gelius, S. Oscarsson: J. Colloid Interface Sci. 254, 200 (2002)CrossRefGoogle Scholar
  15. 15.
    K. Nauka, T.I. Kamins: J. Electrochem. Soc. 146, 292 (1999)CrossRefGoogle Scholar
  16. 16.
    J. Wang, D. Palecek, P. Nielsen, G. Rivas, X. Cai, H. Shiraishi, N. Dontha, D. Luo, P.A.M. Farias: J. Am. Chem. Soc. 118, 7667 (1996)CrossRefGoogle Scholar
  17. 17.
    J.G. Fossum, D.S. Lee: Solid State Electron. 25, 741 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    G. Masetti, M. Severi, S. Solmi: IEEE Trans. Electron Devices 30, 764 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Z. Li
    • 1
  • B. Rajendran
    • 1
  • T.I. Kamins
    • 1
  • X. Li
    • 1
  • Y. Chen
    • 2
  • R. Stanley Williams
    • 1
  1. 1.Quantum Science ResearchHewlett-Packard LaboratoriesPalo AltoUSA
  2. 2.School of Engineering and Applied ScienceUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations