Skip to main content
Log in

Image displacement sensing (NDSE) for achieving overlay alignment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper we discuss the application of NDSE [1] (Hewlett Packard’s nanoscale displacement sensing and estimation technology) as an overlay metrology tool. We describe a method where nanoscale displacement sensing forms the basis of a precision alignment measurement. We will then provide a review of experiments performed to assess the accuracy of one particular NDSE algorithm, tracking silicon targets as they translate on a piezoelectric stage under an optical microscope. We conclude by describing upcoming experiments which will incorporate NDSE as an alignment sensor in a nanoimprint lithography application.

Current methods of overlay metrology and many methods of displacement metrology require precise alignment targets, such as symmetric geometric figures or extremely high-Q diffraction gratings. Such patterns are expensive to produce and/difficult to fabricate consistently. On the other hand, NDSE provides displacement sensing by tracking totally arbitrary patterns. As long as the patterns remain fixed, NDSE can provide extraordinary precision. We extend this advantage into a method for alignment sensing, which retains displacement sensing as the key underlying measurement. Hence, as with displacement sensing, the alignment targets need not be held to any absolute standard, pattern asymmetries caused by process variations are not an issue, and precision gratings are not required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gao, C. Picciotto, W. Jackson: Appl. Phys. A, DOI: 10.1007/s00339-004-3153-5 (2005)

  2. Y. Chen, G.Y. Jung, D.A.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, R.S. Williams: Nanotechnology 14, 462 (2003)

    Article  ADS  Google Scholar 

  3. M.-T. Li, L. Chen, S.Y. Chou: Appl. Phys. Lett. 78, 3322 (2001)

    Article  ADS  Google Scholar 

  4. R. DeJule: A Look at Overlay Error, Semiconductor international, Newton, 23, 52 (2000)

    Google Scholar 

  5. A. Starikov: Metrology of image placement, AIP Conf. Proc. 449, 513 (1998)

    ADS  Google Scholar 

  6. N.T. Sullivan: Critical issues in overlay metrology, AIP Conf. Proc. 550, 346 (2001)

    ADS  Google Scholar 

  7. N.T. Sullivan, J. Shin: Overlay metrology: the systematic, the random and the ugly, AIP Conf. Proc. 449, 502 (1998)

    ADS  Google Scholar 

  8. J.N. Helbert: Handbook of VLSI Microlithography: Principles, Technology, and Applications, 2nd ed., Park Ridge, N.J.: Noyes Publications; Norwich, N.Y.: William Andrew Pub., (2001) pp. 420–436,

  9. X. Chen, A.A. Ghazanfarian, M.A. McCord, R.F.W. Pease: J. Vac. Sci. Technol. B 16, 3637 (1998)

    Article  Google Scholar 

  10. S. Mayo, J.J. Kopanski, W.F. Guthrie: Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology, AIP Conf. Proc. 449, 567 (1998)

    ADS  Google Scholar 

  11. W. Zhang, S.Y. Chou: Appl. Phys. Lett. 79, 845 (2001)

    Article  ADS  Google Scholar 

  12. E.E. Moon, L. Chen, N.P. Everett, M.K. Mondol Mark, H.I. Smith: J. Vac. Sci. Technol. B 21, 3112 (2003)

    Article  Google Scholar 

  13. A. Feigel, Z. Kotler, B. Sfez: Opt. Lett. 27, 746 (2002)

    Article  ADS  Google Scholar 

  14. H. Ryoichi, H. Tatsuhiko, N. Hiroshi, K. Osamu, N. Takeshi, U. Norio: J. Vac. Sci. Technol. B 12, 3247 (1994)

    Article  Google Scholar 

  15. H. Zhou, M. Feldman, R. Bass: J. Vac. Sci. Technol. B 12, 3261 (1994)

    Article  Google Scholar 

  16. S. Sohail, H. Naqvi, S.H. Zaidi, S.R.J. Brueck, J.R. McNeil: J. Vac. Sci. Technol. B 12, 3600 (1994)

    Article  Google Scholar 

  17. D.L. White, O.R. Wood II: J. Vac. Sci. Technol. B 18, 3552 (2000)

    Article  Google Scholar 

  18. G.L. Brown: ACM Computing Surveys. 24, 325 (1992)

    Article  Google Scholar 

  19. C.-F. Chen, R.L. Engelstad, E.G. Lovell, D.L. White, O.R. Wood II, M.K. Smith, L.R. Harriott: J. Vac. Sci. Technol. B 20, 3099 (2002)

    Article  Google Scholar 

  20. C.D. Schaper, B.-D.Chen, R.F.W. Pease: Rev. Sci. Instrum. 75, 1997 (2004)

    Article  ADS  Google Scholar 

  21. C.D. Schaper: J. Microlithogr., Microfabr., Microsyst. 3, 174 (2004)

    Google Scholar 

  22. F.-M. Wang, R.F.W. Pease: J. Vac. Sci. Technol. B 22, 12 (2004)

    Article  Google Scholar 

  23. V. Boegli, D.P. Kern: J. Vac. Sci. Technol. B 8, 1994 (1990)

    Article  Google Scholar 

  24. http: //www.pixelprofile.com/

  25. H. Stone, M. Orchard, E.-C. Chang: Subpixel registration of images. Conference record of the thirty-third asilomar conference on signals, systems, and computers (Cat. No.CH37020). IEEE, Piscataway, NJ, USA. 2 (1999) pp. 1446–52

  26. S.Y. Chou, P.R. Krauss , P.J. Renstrom: J. Vac. Sci. Technol. B 14, 4129 (1996)

    Article  Google Scholar 

  27. International Technology Roadmap For Semiconductors (2003), SIA (Semiconductor Industry Association)

  28. L.J. Guo: J. Phys. D: Appl. Phys. 11, R123 (2004)

  29. J.T. Hastings, F. Zhang, M.A. Finlayson, J.G. Goodberlet, H.I. Smith: J. Vac. Sci. Technol. B 18, 3268 (2000)

    Article  Google Scholar 

  30. N. Li, W. Wu, S.Y. Chou: Sub-100 nm alignment accuracy in nanoimprint lithography using moiré fringe method, Second International Conference on Nanoimprint and Nanoprint Technology, Boston (2003)

  31. Thanks to Will Tong of Hewlett Packard/Corvallis for CAD design of mold

  32. J. Ertel, W.D. Holland, K.D. Vincent, R. Jamp, R.R. Baldwin: Substrate advance measurement system using cross-correlation of light sensor array signals, United States Patent No. 5,149,980, 1991

  33. B. Tullis, L. McColloch: Method of correlating immediately acquired and previously stored feature information for motion sensing, US Patent No. 6,222,174, 1999

  34. R. Beausoleil, R. Allen: Navigation system for handheld scanner, US Patent No. 6,195,475, 2001

  35. C. Picciotto, J. Gao: Displacement estimation system and method, US patent pending, Hewlett Packard internal docket number 200403695

  36. C. Picciotto, J. Gao: Displacement estimation system and method, US patent pending, Hewlett Packard internal docket number 200403700

  37. C. Picciotto, J. Gao, W. Wu: Displacement estimation system and method, US patent pending, Hewlett Packard internal docket number 200403527

  38. C. Picciotto, J. Gao: Displacement measurements using phase changes, US patent pending, Hewlett Packard internal docket number 200401942

  39. C. Picciotto, J. Gao: Measuring sub-wavelength image displacements, US patent pending, Hewlett Packard internal docket number 200400345

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Picciotto.

Additional information

PACS

06.30.Bp; 06.60.Sx; 81.16.-c; 81.16.Nd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picciotto, C., Gao, J., Hoarau, E. et al. Image displacement sensing (NDSE) for achieving overlay alignment. Appl. Phys. A 80, 1287–1299 (2005). https://doi.org/10.1007/s00339-004-3152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3152-6

Keywords

Navigation