Applied Physics A

, Volume 80, Issue 6, pp 1287–1299 | Cite as

Image displacement sensing (NDSE) for achieving overlay alignment

Article

Abstract

In this paper we discuss the application of NDSE [1] (Hewlett Packard’s nanoscale displacement sensing and estimation technology) as an overlay metrology tool. We describe a method where nanoscale displacement sensing forms the basis of a precision alignment measurement. We will then provide a review of experiments performed to assess the accuracy of one particular NDSE algorithm, tracking silicon targets as they translate on a piezoelectric stage under an optical microscope. We conclude by describing upcoming experiments which will incorporate NDSE as an alignment sensor in a nanoimprint lithography application.

Current methods of overlay metrology and many methods of displacement metrology require precise alignment targets, such as symmetric geometric figures or extremely high-Q diffraction gratings. Such patterns are expensive to produce and/difficult to fabricate consistently. On the other hand, NDSE provides displacement sensing by tracking totally arbitrary patterns. As long as the patterns remain fixed, NDSE can provide extraordinary precision. We extend this advantage into a method for alignment sensing, which retains displacement sensing as the key underlying measurement. Hence, as with displacement sensing, the alignment targets need not be held to any absolute standard, pattern asymmetries caused by process variations are not an issue, and precision gratings are not required.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gao, C. Picciotto, W. Jackson: Appl. Phys. A, DOI: 10.1007/s00339-004-3153-5 (2005)Google Scholar
  2. 2.
    Y. Chen, G.Y. Jung, D.A.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, R.S. Williams: Nanotechnology 14, 462 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M.-T. Li, L. Chen, S.Y. Chou: Appl. Phys. Lett. 78, 3322 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    R. DeJule: A Look at Overlay Error, Semiconductor international, Newton, 23, 52 (2000)Google Scholar
  5. 5.
    A. Starikov: Metrology of image placement, AIP Conf. Proc. 449, 513 (1998)ADSGoogle Scholar
  6. 6.
    N.T. Sullivan: Critical issues in overlay metrology, AIP Conf. Proc. 550, 346 (2001)ADSGoogle Scholar
  7. 7.
    N.T. Sullivan, J. Shin: Overlay metrology: the systematic, the random and the ugly, AIP Conf. Proc. 449, 502 (1998)ADSGoogle Scholar
  8. 8.
    J.N. Helbert: Handbook of VLSI Microlithography: Principles, Technology, and Applications, 2nd ed., Park Ridge, N.J.: Noyes Publications; Norwich, N.Y.: William Andrew Pub., (2001) pp. 420–436,Google Scholar
  9. 9.
    X. Chen, A.A. Ghazanfarian, M.A. McCord, R.F.W. Pease: J. Vac. Sci. Technol. B 16, 3637 (1998)CrossRefGoogle Scholar
  10. 10.
    S. Mayo, J.J. Kopanski, W.F. Guthrie: Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology, AIP Conf. Proc. 449, 567 (1998)ADSGoogle Scholar
  11. 11.
    W. Zhang, S.Y. Chou: Appl. Phys. Lett. 79, 845 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    E.E. Moon, L. Chen, N.P. Everett, M.K. Mondol Mark, H.I. Smith: J. Vac. Sci. Technol. B 21, 3112 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Feigel, Z. Kotler, B. Sfez: Opt. Lett. 27, 746 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    H. Ryoichi, H. Tatsuhiko, N. Hiroshi, K. Osamu, N. Takeshi, U. Norio: J. Vac. Sci. Technol. B 12, 3247 (1994)CrossRefGoogle Scholar
  15. 15.
    H. Zhou, M. Feldman, R. Bass: J. Vac. Sci. Technol. B 12, 3261 (1994)CrossRefGoogle Scholar
  16. 16.
    S. Sohail, H. Naqvi, S.H. Zaidi, S.R.J. Brueck, J.R. McNeil: J. Vac. Sci. Technol. B 12, 3600 (1994)CrossRefGoogle Scholar
  17. 17.
    D.L. White, O.R. Wood II: J. Vac. Sci. Technol. B 18, 3552 (2000)CrossRefGoogle Scholar
  18. 18.
    G.L. Brown: ACM Computing Surveys. 24, 325 (1992)CrossRefGoogle Scholar
  19. 19.
    C.-F. Chen, R.L. Engelstad, E.G. Lovell, D.L. White, O.R. Wood II, M.K. Smith, L.R. Harriott: J. Vac. Sci. Technol. B 20, 3099 (2002)CrossRefGoogle Scholar
  20. 20.
    C.D. Schaper, B.-D.Chen, R.F.W. Pease: Rev. Sci. Instrum. 75, 1997 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    C.D. Schaper: J. Microlithogr., Microfabr., Microsyst. 3, 174 (2004)Google Scholar
  22. 22.
    F.-M. Wang, R.F.W. Pease: J. Vac. Sci. Technol. B 22, 12 (2004)CrossRefGoogle Scholar
  23. 23.
    V. Boegli, D.P. Kern: J. Vac. Sci. Technol. B 8, 1994 (1990)CrossRefGoogle Scholar
  24. 24.
    http: //www.pixelprofile.com/Google Scholar
  25. 25.
    H. Stone, M. Orchard, E.-C. Chang: Subpixel registration of images. Conference record of the thirty-third asilomar conference on signals, systems, and computers (Cat. No.CH37020). IEEE, Piscataway, NJ, USA. 2 (1999) pp. 1446–52Google Scholar
  26. 26.
    S.Y. Chou, P.R. Krauss , P.J. Renstrom: J. Vac. Sci. Technol. B 14, 4129 (1996)CrossRefGoogle Scholar
  27. 27.
    International Technology Roadmap For Semiconductors (2003), SIA (Semiconductor Industry Association)Google Scholar
  28. 28.
    L.J. Guo: J. Phys. D: Appl. Phys. 11, R123 (2004)Google Scholar
  29. 29.
    J.T. Hastings, F. Zhang, M.A. Finlayson, J.G. Goodberlet, H.I. Smith: J. Vac. Sci. Technol. B 18, 3268 (2000)CrossRefGoogle Scholar
  30. 30.
    N. Li, W. Wu, S.Y. Chou: Sub-100 nm alignment accuracy in nanoimprint lithography using moiré fringe method, Second International Conference on Nanoimprint and Nanoprint Technology, Boston (2003)Google Scholar
  31. 31.
    Thanks to Will Tong of Hewlett Packard/Corvallis for CAD design of moldGoogle Scholar
  32. 32.
    J. Ertel, W.D. Holland, K.D. Vincent, R. Jamp, R.R. Baldwin: Substrate advance measurement system using cross-correlation of light sensor array signals, United States Patent No. 5,149,980, 1991Google Scholar
  33. 33.
    B. Tullis, L. McColloch: Method of correlating immediately acquired and previously stored feature information for motion sensing, US Patent No. 6,222,174, 1999Google Scholar
  34. 34.
    R. Beausoleil, R. Allen: Navigation system for handheld scanner, US Patent No. 6,195,475, 2001Google Scholar
  35. 35.
    C. Picciotto, J. Gao: Displacement estimation system and method, US patent pending, Hewlett Packard internal docket number 200403695Google Scholar
  36. 36.
    C. Picciotto, J. Gao: Displacement estimation system and method, US patent pending, Hewlett Packard internal docket number 200403700Google Scholar
  37. 37.
    C. Picciotto, J. Gao, W. Wu: Displacement estimation system and method, US patent pending, Hewlett Packard internal docket number 200403527Google Scholar
  38. 38.
    C. Picciotto, J. Gao: Displacement measurements using phase changes, US patent pending, Hewlett Packard internal docket number 200401942Google Scholar
  39. 39.
    C. Picciotto, J. Gao: Measuring sub-wavelength image displacements, US patent pending, Hewlett Packard internal docket number 200400345Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Hewlett Packard Labs.Palo AltoUSA

Personalised recommendations