Contacting a single molecular wire by STM manipulation
- 116 Downloads
- 10 Citations
Abstract
The Lander molecule (C90H98) consists of a long polyaromatic molecular wire and four lateral di-tert-butyl-phenyl spacer groups, designed to maintain the molecular wire parallel above the substrate. It represents a model system for investigating the electronic contacts of a molecular wire to a nanoscale metallic electrode. In this article, some recent manipulation experiments of single Lander molecules by low temperature scanning tunneling microscopy (LT-STM) are presented. The selective adsorption of the molecule, the molecule-induced reconstruction of copper substrates, and their application to the investigation of contacts between molecules and nanostructures or between molecules are discussed. Manipulation experiments are reported, where the molecular wire part of a Lander molecule is contacted to a monoatomic step and to a two-atom-wide metallic nanostructure. The contact is characterized by the apparent height of the contact point in STM images and, in case of the Cu(111) substrate, by the perturbation observed in the electronic standing wave patterns.
Keywords
Step Edge Molecular Wire Standing Wave Pattern Central Wire Electronic ContactPreview
Unable to display preview. Download preview PDF.
References
- 1.C. Joachim, J.K. Gimzewski, A. Aviram: Nature 408, 541 (2000)ADSCrossRefGoogle Scholar
- 2.M.R. Brycs, M.C. Petty, D. Bloor (Eds.): Molecular Electronics (Oxford University Press, New York 1995)Google Scholar
- 3.A. Aviram, M.A. Ratner: Chem. Phys. Lett. 29, 277 (1974)ADSCrossRefGoogle Scholar
- 4.F. Moresco, G. Meyer, K.H. Rieder, H. Tang, A. Gourdon, C. Joachim: Phys. Rev. Lett. 87, 088302 (2001)ADSCrossRefGoogle Scholar
- 5.F. Moresco, G. Meyer, K.H. Rieder, H. Tang, A. Gourdon, C. Joachim: Phys. Rev. Lett. 86, 672 (2001)ADSCrossRefGoogle Scholar
- 6.M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour: Science 278, 252 (1997)CrossRefGoogle Scholar
- 7.J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour: Science 286, 1550 (1999)CrossRefGoogle Scholar
- 8.V.J. Langlais, R.R. Schlitter, H. Tang, A. Gourdon, C. Joachim, J.K. Gimzewski: Phys. Rev. Lett. 83, 2809 (1999)ADSCrossRefGoogle Scholar
- 9.N.D. Lang, Ph. Avouris: Phys. Rev. Lett. 84, 358 (2000)ADSCrossRefGoogle Scholar
- 10.A. Gourdon: Eur. J. Org. Chem. 2797 (1998)Google Scholar
- 11.G. Meyer: Rev. Sci. Instrum. 67, 2960 (1996)ADSCrossRefGoogle Scholar
- 12.S. Zöphel: Ph.D. Thesis, Freie Universität Berlin (2000)Google Scholar
- 13.L. Bartels, G. Meyer, K.H. Rieder: Phys. Rev. Lett. 79, 697 (1997)ADSCrossRefGoogle Scholar
- 14.F. Moresco, G. Meyer, K.H. Rieder, H. Tang, A. Gourdon, C. Joachim: Appl. Phys. Lett. 78, 306 (2001)ADSCrossRefGoogle Scholar
- 15.S. Chiang: Chem. Rev. 97, 1083 (1987)CrossRefGoogle Scholar
- 16.T.A. Jung, R.R. Schlitter, J.K. Gimzewski: Nature 386, 696 (1997)ADSCrossRefGoogle Scholar
- 17.F. Moresco, G. Meyer, K.H. Rieder, J. Ping, H. Tang, C. Joachim: Surf. Sci. 499, 94 (2002)ADSCrossRefGoogle Scholar
- 18.F. Moresco, G. Meyer, K.H. Rieder, H. Tang, A. Gourdon, C. Joachim: Phys. Rev. Lett. 86, 672 (2001)ADSCrossRefGoogle Scholar
- 19.F. Moresco, G. Meyer, K.H. Rieder, H. Tang, A. Gourdon, C. Joachim: Phys. Rev. Lett. 87, 088302 (2001)ADSCrossRefGoogle Scholar
- 20.J. Kuntze, R. Berndt, J. Ping, H. Tang, A. Gourdon, C. Joachim: Phys. Rev. B 65, 233405 (2002)ADSCrossRefGoogle Scholar
- 21.F. Rosei, M. Schunack, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim, F. Besenbacher: Science 296, 328 (2002)ADSCrossRefGoogle Scholar
- 22.M. Schunack, F. Rosei, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim, F. Besenbacher: J. Chem. Phys. 117, 6259 (2002)ADSCrossRefGoogle Scholar
- 23.L. Gross, F. Moresco, M. Alemani, K.H. Rieder, H. Tang, C. Joachim: Chem. Phys. Lett. 371, 750 (2003)ADSCrossRefGoogle Scholar
- 24.P. Sautet, C. Joachim: Chem. Phys. Lett. 185, 23 (1991)ADSCrossRefGoogle Scholar
- 25.P. Sautet, C. Joachim: Surf. Sci. 271, 387 (1992)ADSCrossRefGoogle Scholar
- 26.F. Moresco, G. Meyer, K.H. Rieder, J. Ping, H. Tang, C. Joachim: Surf. Sci. 499, 94 (2002)ADSCrossRefGoogle Scholar
- 27.M. Schunack, L. Petersen, A. Kühnle, E. Laegsgaard, I. Stensgard, I. Johannsen, F. Besenbacher: Phys. Rev. Lett. 86, 456 (2001)ADSCrossRefGoogle Scholar
- 28.J. Weckesser, C. Cepek, R. Fasel, J.V. Barth, F. Baumberger, T. Greber, K. Kern: J. Chem. Phys. 115, 9001 (2001)ADSCrossRefGoogle Scholar
- 29.L. Grill, F. Moresco, P. Jiang, C. Joachim, A. Gourdon, K.H. Rieder: Phys. Rev. B 69, 035416 (2004)ADSCrossRefGoogle Scholar
- 30.R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van Hermert, J.M. van Ruitenbeek: Nature 419, 906 (2002)ADSCrossRefGoogle Scholar
- 31.C.P. Collier, E.W. Wong, M. Belohradský, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath: Science 285, 391 (1999)CrossRefGoogle Scholar
- 32.F. Moresco, L. Gross, M. Alemani, K.H. Rieder, H. Tang, A. Gourdon, C. Joachim: Phys. Rev. Lett. 91, 36601 (2003)ADSCrossRefGoogle Scholar
- 33.M.F. Crommie, C.P. Lutz, D.M. Eigler: Nature 363, 524 (1993)ADSCrossRefGoogle Scholar
- 34.Y. Hasegawaand, Ph. Avouris: Phys. Rev. Lett. 71, 1071 (1993)ADSCrossRefGoogle Scholar
- 35.E.J. Heller, M.F. Crommie, C.P. Lutz, D.M. Eigler: Nature 369, 464 (1994)ADSCrossRefGoogle Scholar
- 36.M.F. Crommie, C.P. Lutz, D.M. Eigler: Nature 262, 218 (1993)Google Scholar
- 37.K.-F. Braun, K.H. Rieder: Phys. Rev. Lett. 88, 096801 (2002)ADSCrossRefGoogle Scholar
- 38.H.C. Manoharan, C.P. Lutz, D.M. Eigler: Nature 403, 512 (2000)ADSCrossRefGoogle Scholar