Applied Physics A

, Volume 80, Issue 4, pp 709–715 | Cite as

Electron-microscopy studies of NaAlH4 with TiF3 additive: hydrogen-cycling effects

  • C.M. Andrei
  • J.C. Walmsley
  • H.W. Brinks
  • R. HolmestadEmail author
  • S.S. Srinivasan
  • C.M. Jensen
  • B.C. Hauback
Rapid communication


NaAlH4 is a promising candidate material for hydrogen storage. Ti additives are effective in reducing the reaction temperatures and improving kinetics. In this work, the microstructure of NaAlH4 with 2% TiF3 has been studied in different conditions using a combination of transmission electron microscopy and scanning electron microscopy, both with energy-dispersive spectroscopic X-ray analysis. The effect of the additive on particle and grain size was examined after the initial ball-milling process and after 15 cycles. The additive has an uneven distribution in the sample after ball milling. Selected-area diffraction and high-resolution imaging confirmed the presence of TiF3. This phase accounts for most of the Ti in the material at this stage and showed limited mixing with the alanate. The grain size within particles for TiF3 is larger than for the alanate particles. Diffraction from the latter was dominated by metallic aluminium. After cycling, the TiF3 has decomposed and energy-dispersive spectroscopic X-ray analysis maps showed some combination of Ti with the alanate phase. There is no significant change in the measurable grain size of the Al-containing alanate particles between the ball-milled and the 15-cycled samples, but more cycles result in agglomeration of the material.


Grain Size Transmission Electron Microscopy Milling Agglomeration Ball Milling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Bogdanovic, M. Schwickardi: J. Alloys Compd. 253, 1 (1997)CrossRefGoogle Scholar
  2. 2.
    B. Bogdanovic, M. Schwickardi: International Patent WO97/03919 (1997)Google Scholar
  3. 3.
    C.M. Jensen, R.A. Zidan, N. Mariels, A.G. Hee, C. Hagen: Int. J. Hydrogen Energy 23, 461 (1999)CrossRefGoogle Scholar
  4. 4.
    R.A. Zidan, S. Takara, A.G. Hee, C.M. Jensen: J. Alloys Compd. 285, 119 (1999)CrossRefGoogle Scholar
  5. 5.
    B. Bogdanovic, R.A. Brand, A. Marjanovic, M. Schwickardi, J. Tolle: J. Alloys Compd. 302, 36 (2000)CrossRefGoogle Scholar
  6. 6.
    A. Zaluska, L. Zaluski, J.O. Strom-Olsen: J. Alloys Compd. 298, 125 (2000)CrossRefGoogle Scholar
  7. 7.
    C.M. Jensen, K.J. Gross: Appl. Phys. A 72, 213 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    K.J. Gross, G.J. Thomas, C.M. Jensen: J. Alloys Compd. 330, 683 (2002)CrossRefGoogle Scholar
  9. 9.
    G. Sandrock, K. Gross, G. Thomas, C. Jensen, D. Meeker, S. Takara: J. Alloys Compd. 330, 696 (2002)CrossRefGoogle Scholar
  10. 10.
    G.P. Meisner, G.G. Tibbetts, F.E. Pinkerton, C.H. Olk, M.P. Balogh: J. Alloys Compd. 337, 254 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Sandrock, K. Gross, G. Thomas: J. Alloys Compd. 339, 299 (2002)CrossRefGoogle Scholar
  12. 12.
    D.L. Anton: J. Alloys Compd. 356, 400 (2003)CrossRefGoogle Scholar
  13. 13.
    T. Kiyobayashi, S.S. Srinivasan, D. Sun, C.M. Jensen: J. Phys. Chem. 423, (2003)Google Scholar
  14. 14.
    E.H. Majzoub, K.J. Gross: J. Alloys Compd. 356, 363 (2003)CrossRefGoogle Scholar
  15. 15.
    K.J. Gross, E.H. Majzoub, S.W. Spangler: J. Alloys Compd. 356, 423 (2003)CrossRefGoogle Scholar
  16. 16.
    P. Wang, C.M. Jensen: J. Alloys Compd. 379, 99 (2004)CrossRefGoogle Scholar
  17. 17.
    S.S. Srinivasan, H.W. Brinks, B.C. Hauback, D. Sun, C.M. Jensen: J. Alloys Compd. 377, 283 (2004)CrossRefGoogle Scholar
  18. 18.
    K.J. Gross, S. Guthrie, S. Takara, G. Thomas: J. Alloys Compd. 297, 270 (2000)CrossRefGoogle Scholar
  19. 19.
    D. Sun, T. Kiyobayashi, H.T. Takeshita, N. Kuriyama, C.M. Jensen: J. Alloys Compd. 337, L8 (2002)Google Scholar
  20. 20.
    B.C. Hauback, H.W. Brinks, C.M. Jensen, K. Murphy, A.J. Maeland: J. Alloys Compd. 358, 142 (2003)CrossRefGoogle Scholar
  21. 21.
    M.P. Balogh, G.G. Tibbetts, F.E. Pinkerton, G.P. Meisner, C.H. Olk: J. Alloys Compd. 350, 136 (2003)CrossRefGoogle Scholar
  22. 22.
    B. Bogdanovic, M. Felderhoff, M. Germann, M. Hartel, A. Pommerin, F. Schuth, C. Weidenthaler, B. Zibrowius: J. Alloys Compd. 350, 246 (2003)CrossRefGoogle Scholar
  23. 23.
    D. Sun, S.S. Srinivasan, T. Kiyobayashi, N. Kuriyama, C.M. Jensen: J. Phys. Chem. B 107, 10176 (2003)CrossRefGoogle Scholar
  24. 24.
    M. Felderhoff, K. Klementiev, W. Grunert, B. Spliethoff, B. Tesche, J.M. Bellosta von Colbe, B. Bogdanovic, M. Hartel, A. Pommerin, F. Schuth, C. Weidenthaler: Phys. Chem. 6, 4369 (2004)Google Scholar
  25. 25.
    J. Iniguez, T. Yildirim, T.J. Udovic, M. Sulic, C.M. Jensen: Phys. Rev. B 70, 60101 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    H.W. Brinks, C.M. Jensen, S.S. Srinivasan, B.C. Hauback, D. Blanchard, K. Murphy: J. Alloys Compd. 376, 215 (2004)CrossRefGoogle Scholar
  27. 27.
    C.M. Andrei, J. Walmsley, H.W. Brinks, R. Holmestad, B.C. Hauback, G.A. Botton: submitted to J. Phys. Chem. BGoogle Scholar
  28. 28.
    G.J. Thomas, K.J. Gross, N.Y.C. Yang, C. Jensen: J. Alloys Compd. 330, 702 (2002)CrossRefGoogle Scholar
  29. 29.
    O.M. Løvvik, S. Opalka: submitted to Phys. Rev. BGoogle Scholar
  30. 30.
    M. Pitt: personal communicationsGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • C.M. Andrei
    • 1
  • J.C. Walmsley
    • 2
  • H.W. Brinks
    • 3
  • R. Holmestad
    • 1
    Email author
  • S.S. Srinivasan
    • 4
  • C.M. Jensen
    • 4
  • B.C. Hauback
    • 3
  1. 1.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF Materials and ChemistryTrondheimNorway
  3. 3.Institute for Energy TechnologyKjellerNorway
  4. 4.Department of ChemistryUniversity of HawaiiHonoluluUSA

Personalised recommendations