Advertisement

Applied Physics A

, Volume 81, Issue 6, pp 1157–1162 | Cite as

Column-growth mechanisms during KrF laser micromachining of Al2O3–TiC ceramics

  • V. OliveiraEmail author
  • F. Simões
  • R. Vilar
Article

Abstract

This paper aims to contribute to the understanding of column-formation mechanisms in Al2O3–TiC ceramic composites due to processing with excimer laser radiation. The mechanisms proposed in the literature to explain the formation of such columns can be grouped into four categories: hydrodynamic mechanisms, vapour phase deposition mechanisms, spatial modulation of absorbed energy mechanisms, and shadowing mechanisms. In the case of Al2O3–TiC ceramics, the first two types of mechanisms can be excluded because experimental results show that the column core is composed of material in a pristine condition. A theoretical simulation of the spatial modulation of absorbed energy due to radiation reflected from pre-existing topographic artefacts reveals that this mechanism does not explain the fact that columns only grow during the first 100–200 laser pulses and can, therefore, be ruled out. By contrast, predictions of the shadowing mechanism with TiC globules formed during the first laser pulses shielding the substrate and favouring column growth are in semiquantitative agreement with experimental observations.

Keywords

Al2O3 Laser Pulse Energy Mechanism Excimer Laser Spatial Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.E. Dyer, S.D. Jenkins, J. Sidhu: Appl. Phys. Lett. 49, 453 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    A.B. Brailovsky, I.A. Dorofeev, A.B. Ezerskii, V.A. Ermakov, V.I. Luchin, V.E. Semenov: Sov. Phys: Tech. Phys. 36, 324 (1991)Google Scholar
  3. 3.
    S.R. Foltyn, R.C. Dye, K.C. Ott, E. Peterson, K.M. Hubbard, W. Hutchinson, R.E. Muenchausen, R.C. Estler, X.D. Wu: Appl. Phys. Lett. 59, 594 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    T.P. O’Brien, J.F. Lawler, J.G. Lunney, W.J. Blau: Mater. Sci. Eng. B 13, 9 (1992)CrossRefGoogle Scholar
  5. 5.
    D.J. Krajnovich, J.E. Vásquez, R.J. Savoy: Science 259, 1590 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    F. Sánchez, J.L. Morenza, R. Aguiar, J.C. Delgado, M. Varela: Appl. Phys. Lett. 69, 620 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    J. Heitz, J.D. Pedarning, D. Bauerle, G. Petzow: Appl. Phys. A 65, 259 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    H.C. Man, X.M. Zhang, T.M. Yue, W.S. Lau: J. Mater. Proc. Tech. 66, 123 (1997)CrossRefGoogle Scholar
  9. 9.
    V. Oliveira, O. Conde, R. Vilar, P. Freitas: J. Mater. Res. 12, 3206 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    S. Ono, S. Nakaoka, J. Wang, H. Niino, A. Yabe: Jpn. J. Appl. Phys. 36, L1387 (1997)Google Scholar
  11. 11.
    J. Lappalainen, J. Frantti, V. Lanto: J. Am. Ceram. Soc. 82, 889 (1999)CrossRefGoogle Scholar
  12. 12.
    A. Pedraza, J.D. Fowlkes, D.H. Lowndes: Appl. Phys. Lett. 74, 2322 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    S.I. Dolgaev, S.V. Lavrishev, A.A. Lyalin, A.V. Simakin, V.V. Voronov, G.A. Shafeev: Appl. Phys. A 73, 177 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, D. Bauerle: Appl. Phys. Lett. 82, 692 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    S.R. Foltyn: ‘Surface Modification of Materials by Cumulative Laser Irradiation’. In: D.B. Chrisey, G.K. Hubler (Eds.) Pulsed Laser Deposition of Thin Films (Wiley-Interscience, New York 1994) pp. 89–113Google Scholar
  16. 16.
    A. Usoskin, H.C. Freyhardt, H.U. Krebs: Appl. Phys. A 69, S823 (1999)Google Scholar
  17. 17.
    F. Sánchez, J.L. Morenza, V. Trtik: Appl. Phys. Lett. 75, 3303 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    A.B. Brailovsky, S.V. Gaponov, V.I. Luchin: Appl. Phys. A 61, 81 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    V. Oliveira, R. Vilar: J. Mater. Res. 18, 1123 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    V. Oliveira, R. Vilar, O. Conde: Appl. Surf. Sci. 127129, 831 (1998)Google Scholar
  21. 21.
    V. Oliveira, O. Conde, R. Vilar: Adv. Eng. Mater. 3, 75 (2001)CrossRefGoogle Scholar
  22. 22.
    A.B. Utkin, V. Oliveira, R. Vilar: Mod. Simul. Mater. Sci. Eng. 9, 513 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    J. Pflüger, J. Fink, W. Weber, K.P. Bohnen: Phys. Rev. B 30, 1155 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    F. Gervais: ‘Aluminum Oxide’. In: E. Palik (Ed.) Handbook of Optical Constants of Solids II (Academic Press, New York 1991) pp. 761–775Google Scholar
  25. 25.
    V. Oliveira, J.C. Orlianges, A. Catherinot, O. Conde, R. Vilar: Appl. Surf. Sci. 186, 309 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Instituto Superior TécnicoDepartamento de Engenharia de MateriaisLisboaPortugal

Personalised recommendations